OFFSET
1,2
COMMENTS
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 6720. - Philippe A.J.G. Chevalier, Dec 28 2015
a(n) is the sum of the numerator and denominator of the reduced fraction resulting from the sum A000217(n-2)/A000217(n-1) + A000217(n-1)/A000217(n), n>1. - J. M. Bergot, Jun 10 2017
For n > 1, a(n) is also the number of (not necessarily maximal) cliques in the (n-1)-Andrásfai graph. - Eric W. Weisstein, Nov 29 2017
a(n+1) is the sum of the lengths of all the segments used to draw a square of side n representing the most classic pattern for walls made of 2 X 1 bricks, known as a 1-over-2 pattern, where each joint between neighboring bricks falls over the center of the brick below. - Stefano Spezia, Jun 05 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
Leo Tavares, Illustration: Trapezoids (A115067)
Eric Weisstein's World of Mathematics, Andrásfai Graph.
Eric Weisstein's World of Mathematics, Clique.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = (3*n+2)*(n-1)/2.
a(n+1) = n*(3*n + 5)/2. - Omar E. Pol, May 21 2008
a(n) = 3*n + a(n-1) - 2 for n>1, a(1)=0. - Vincenzo Librandi, Nov 13 2010
a(n) = A095794(-n). - Bruno Berselli, Sep 02 2011
G.f.: x^2*(4-x) / (1-x)^3. - R. J. Mathar, Sep 02 2011
E.g.f.: exp(x)*x*(8 + 3*x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi/(5*sqrt(3)) - 3*log(3)/5 + 21/25.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2)/5 - 2*Pi/(5*sqrt(3)) + 9/25. (End)
a(n) = Sum_{j=0..n-2} (2*n-j) = Sum_{j=0..n-2} (n+2+j), for n>=1. See the trapezoid link. - Leo Tavares, May 20 2022
EXAMPLE
Illustrations for n = 2..7 from Stefano Spezia, Jun 05 2021:
_ _ _ _ _ _
|_| |_|_| |_|_ _|
|_ _| |_ _|_|
|_|_ _|
a(2) = 4 a(3) = 11 a(4) = 21
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _| |_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_| |_|_ _|_ _| |_|_ _|_ _|_|
|_ _|_ _|_| |_ _|_ _|_ _|
|_|_ _|_ _|_|
a(5) = 34 a(6) = 50 a(7) = 69
MATHEMATICA
Table[n (3 n - 1)/2 - 1, {n, 50}] (* Vincenzo Librandi, Jun 11 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 11}, 20] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[(-4 + x) x/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
PROG
(PARI) a(n)=n*(3*n-1)/2-1 \\ Charles R Greathouse IV, Jan 27 2012
(Magma) [n*(3*n-1)/2-1: n in [1..50]]; // Vincenzo Librandi, Jun 11 2017
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 01 2006
EXTENSIONS
Edited by N. J. A. Sloane, Mar 05 2006
STATUS
approved