The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115067 a(n) = (3*n^2 - n - 2)/2. 33
 0, 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, 209, 246, 286, 329, 375, 424, 476, 531, 589, 650, 714, 781, 851, 924, 1000, 1079, 1161, 1246, 1334, 1425, 1519, 1616, 1716, 1819, 1925, 2034, 2146, 2261, 2379, 2500, 2624, 2751, 2881, 3014, 3150, 3289, 3431, 3576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 6720. - Philippe A.J.G. Chevalier, Dec 28 2015 a(n) = the sum of the numerator and denominator of the reduced fraction resulting from the sum A000217(n-2)/A000217(n-1) + A000217(n-1)/A000217(n), n>1. - J. M. Bergot, Jun 10 2017 For n > 1, a(n) is also the number of (not necessarily maximum) cliques in the (n-1)-Andrasfai graph. - Eric W. Weisstein, Nov 29 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Andrasfai Graph Eric Weisstein's World of Mathematics, Clique Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = (3*n+2)*(n-1)/2. a(n+1) = n*(3*n + 5)/2. - Omar E. Pol, May 21 2008 a(n) = 3*n + a(n-1) - 2 for n>1, a(1)=0. - Vincenzo Librandi, Nov 13 2010 a(n) = A095794(-n). - Bruno Berselli, Sep 02 2011 G.f.: x^2*(4-x) / (1-x)^3. - R. J. Mathar, Sep 02 2011 a(n) = A055998(2*n-2) - A055998(n-1). - Bruno Berselli, Sep 23 2016 MATHEMATICA Table[n (3 n - 1)/2 - 1, {n, 50}] (* Vincenzo Librandi, Jun 11 2017 *) LinearRecurrence[{3, -3, 1}, {0, 4, 11}, 20] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(-4 + x) x/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *) PROG (PARI) a(n)=n*(3*n-1)/2-1 \\ Charles R Greathouse IV, Jan 27 2012 (MAGMA) [n*(3*n-1)/2-1: n in [1..50]]; // Vincenzo Librandi, Jun 11 2017 CROSSREFS The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542. Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A008585, A005843, A001477, A000217. Cf. A055998. Sequence in context: A038427 A323625 A301096 * A298787 A009893 A027369 Adjacent sequences:  A115064 A115065 A115066 * A115068 A115069 A115070 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Mar 01 2006 EXTENSIONS Edited by N. J. A. Sloane, Mar 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 15:55 EDT 2021. Contains 343156 sequences. (Running on oeis4.)