login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140673
a(n) = 3*n*(n + 5)/2.
13
0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
OFFSET
0,2
COMMENTS
a(n) equals the number of vertices of the A256666(n)-th graph (see Illustration of initial terms in A256666 Links). - Ivan N. Ianakiev, Apr 20 2015
FORMULA
a(n) = A055998(n)*3 = (3*n^2 + 15*n)/2 = n*(3*n + 15)/2.
a(n) = 3*n + a(n-1) + 6 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(3 - 2*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 18*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 137/450.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 47/450. (End)
MATHEMATICA
Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
LinearRecurrence[{3, -3, 1}, {0, 9, 21}, 50] (* Harvey P. Dale, Jul 20 2023 *)
PROG
(PARI) concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
(PARI) a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018
CROSSREFS
Cf. A055998.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Sequence in context: A043892 A332019 A146069 * A186294 A059993 A036704
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, May 22 2008
STATUS
approved