login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129109 Sums of three consecutive hexagonal numbers. 1
7, 22, 49, 88, 139, 202, 277, 364, 463, 574, 697, 832, 979, 1138, 1309, 1492, 1687, 1894, 2113, 2344, 2587, 2842, 3109, 3388, 3679, 3982, 4297, 4624, 4963, 5314, 5677, 6052, 6439, 6838, 7249, 7672, 8107, 8554, 9013, 9484, 9967, 10462, 10969, 11488 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Arises in hexagonal number analog to A129803 Triangular numbers which are the sum of three consecutive triangular numbers. What are the hexagonal numbers which are the sum of three consecutive hexagonal numbers? Prime for a(0) = 7, a(4) = 139, a(6) = 277, a(8) = 463, a(18) = 2113, a(22) = 3109, a(26) = 4297, a(38) = 9013, a(40) = 9967.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = H(n) + H(n+1) + H(n+2) where H(n) = A000384(n) = n(2n-1). a(n) = 6*n^2 + 9*n + 7.

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) with G.f. (7+x+4*x^2)/(1-x)^3. [Colin Barker, Feb 20 2012]

EXAMPLE

a(0) = H(0) + H(1) + H(2) = 0 + 1 + 6 = 7 = 6*0^2 + 9*0 + 7.

a(1) = H(1) + H(2) + H(3) = 1 + 6 + 15 = 22 = 6*1^2 + 9*1 + 7.

a(2) = H(2) + H(3) + H(4) = 6 + 15 + 28 = 49 = 6*2^2 + 9*2 + 7.

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {7, 22, 49}, 50] (* Vincenzo Librandi, Feb 20 2012 *)

PROG

(MAGMA) I:=[7, 22, 49]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012

(PARI) a(n)=6*n^2+9*n+7 \\ Charles R Greathouse IV, Feb 20 2012

CROSSREFS

Cf. A000384, A007667, A034961, A129803, A129863.

Sequence in context: A223833 A014073 A288114 * A224141 A002412 A211652

Adjacent sequences:  A129106 A129107 A129108 * A129110 A129111 A129112

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, May 24 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 13:35 EDT 2017. Contains 290835 sequences.