The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002415 4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12. (Formerly M4135 N1714) 113
 0, 0, 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, 19481, 23276, 27600, 32500, 38025, 44226, 51156, 58870, 67425, 76880, 87296, 98736, 111265, 124950, 139860, 156066, 173641, 192660, 213200, 235340 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also number of ways to legally insert two pairs of parentheses into a string of m := n-1 letters. (There are initially 2C(m+4,4) (A034827) ways to insert the parentheses, but we must subtract 2(m+1) for illegal clumps of 4 parentheses, 2m(m+1) for clumps of 3 parentheses, C(m+1,2) for 2 clumps of 2 parentheses and (m-1)C(m+1,2) for 1 clump of 2 parentheses, giving m(m+1)^2(m+2)/12 = n^2*(n^2-1)/12.) See also A000217. E.g., for n=2 there are 6 ways: ((a))b, ((a)b), ((ab)), (a)(b), (a(b)), a((b)). Let M_n denote the n X n matrix M_n(i,j)=(i+j); then the characteristic polynomial of M_n is x^(n-2) * (x^2-A002378(n)*x - a(n)). - Benoit Cloitre, Nov 09 2002 Let M_n denote the n X n matrix M_n(i,j)=(i-j); then the characteristic polynomial of M_n is x^n + a(n)x^(n-2). - Michael Somos, Nov 14 2002 [See A114327 for the infinite matrix M in triangular form. - Wolfdieter Lang, Feb 05 2018] Number of permutations of [n] which avoid the pattern 132 and have exactly 2 descents. - Mike Zabrocki, Aug 26 2004 Number of tilings of a <2,n,2> hexagon. a(n) is the number of squares of side length at least 1 having vertices at the points of an n X n unit grid of points (the vertices of an n-1 X n-1 chessboard). [For a proof, see Comments in A051602. - N. J. A. Sloane, Sep 29 2021] For example, on the 3 X 3 grid (the vertices of a 2 X 2 chessboard) there are four 1 X 1 squares, one (skew) sqrt(2) X sqrt(2) square, and one 3 X 3 square, so a(3)=6. On the 4 X 4 grid (the vertices of a 3 X 3 chessboard) there are 9 1 X 1 squares, 4 2 X 2 squares, 1 3 X 3 square, 4 sqrt(2) X sqrt(2) squares, and 2 sqrt(5) X sqrt(5) squares, so a(4) = 20. See also A024206, A108279. [Comment revised by N. J. A. Sloane, Feb 11 2015] Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005 Number of distinct components of the Riemann curvature tensor. - Gene Ward Smith, Apr 24 2006 a(n) is the number of 4 X 4 matrices (symmetrical about each diagonal) M = [a,b,c,d;b,e,f,c;c,f,e,b;d,c,b,a] with a+b+c+d=b+e+f+c=n+2; (a,b,c,d,e,f natural numbers). - Philippe Deléham, Apr 11 2007 If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007 a(n) is the number of Dyck (n+1)-paths with exactly n-1 peaks. - David Callan, Sep 20 2007 Starting (1,6,20,50,...) = third partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} C(n+3,i+3)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009 4-dimensional square numbers. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009 Equals row sums of triangle A177877; a(n), n > 1 = (n-1) terms in (1,2,3,...) dot (...,3,2,1) with additive carryovers. Example: a(4) = 20 = (1,2,3) dot (3,2,1) with carryovers = (1*3) + (2*2 + 3) + (3*1 + 7) = (3 + 7 + 10). Convolution of the triangular numbers A000217 with the odd numbers A004273. a(n+2) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w-x=max{w,x,y,z}-min{w,x,y,z}. - Clark Kimberling, May 28 2012 The second level of finite differences is a(n+2) - 2*a(n+1) + a(n) = (n+1)^2, the squares. - J. M. Bergot, May 29 2012 Because the differences of this sequence give A000330, this is also the number of squares in an n+1 X n+1 grid whose sides are not parallel to the axes. a(n+2) gives the number of 2*2 arrays that can be populated with 0..n such that rows and columns are nondecreasing. - Jon Perry, Mar 30 2013 For n consecutive numbers 1,2,3,...,n, the sum of all ways of adding the k-tuples of consecutive numbers for n=a(n+1). As an example, let n=4: (1)+(2)+(3)+(4)=10; (1+2)+(2+3)+(3+4)=15; (1+2+3)+(2+3+4)=15; (1+2+3+4)=10 and the sum of these is 50=a(4+1)=a(5). - J. M. Bergot, Apr 19 2013 If P(n,k) = n*(n+1)*(k*n-k+3)/6 is the n-th (k+2)-gonal pyramidal number, then a(n) = P(n,k)*P(n-1,k-1) - P(n-1,k)*P(n,k-1). - Bruno Berselli, Feb 18 2014 For n > 1, a(n) = 1/6 of the area of the trapezoid created by the points (n,n+1), (n+1,n), (1,n^2+n), (n^2+n,1). - J. M. Bergot, May 14 2014 For n > 3, a(n) is twice the area of a triangle with vertices at points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), and (C(n+2,4),C(n+3,4)). - J. M. Bergot, Jun 03 2014 a(n) is the dimension of the space of metric curvature tensors (those having the symmetries of the Riemann curvature tensor of a metric) on an n-dimensional real vector space. - Daniel J. F. Fox, Dec 15 2018 Coefficients in the terminating series identity 1 - 6*n/(n + 5) + 20*n*(n - 1)/((n + 5)*(n + 6)) - 50*n*(n - 1)*(n - 2)/((n + 5)*(n + 6)*(n + 7)) + ... = 0 for n = 1,2,3,.... Cf. A000330 and A005585. - Peter Bala, Feb 18 2019 REFERENCES O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195. S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165). R. Euler and J. Sadek, "The Number of Squares on a Geoboard", Journal of Recreational Mathematics, 251-5 30(4) 1999-2000 Baywood Pub. NY S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."] O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy] Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015. Henry Bottomley, Illustration of initial terms Duane DeTemple, Using Squares to Sum Squares, The College Mathematics Journal, ? (2010), 214-221. Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6. Reinhard O. W. Franz, and Berton A. Earnshaw, A constructive enumeration of meanders, Ann. Comb. 6 (2002), no. 1, 7-17. M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012. Milan Janjic, Two Enumerative Functions Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019. M. Jones, S. Kitaev, and J. Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013. Sandi Klavžar, Balázs Patkós, Gregor Rus, and Ismael G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO], 2019. G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy] Calvin Lin, Squares on a grid, April 2015 C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 P. N. Rathie, A census of simple planar triangulations, J. Combin. Theory, B 16 (1974), 134-138. See Table I. Royce A. Speck, The Number of Squares on a Geoboard, School Science and Mathematics, Volume 79, Issue 2, pages 145-150, February 1979 Eric Weisstein's World of Mathematics, Riemann Tensor. A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA G.f.: x^2*(1+x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation a(n) = Sum_{i=0..n} (n-i)*i^2 = a(n-1) + A000330(n-1) = A000217(n)*A000292(n-2)/n = A000217(n)*A000217(n-1)/3 = A006011(n-1)/3, convolution of the natural numbers with the squares. - Henry Bottomley, Oct 19 2000 a(n)+1 = A079034(n). - Mario Catalani (mario.catalani(AT)unito.it), Feb 12 2003 a(n) = 2*C(n+2, 4) - C(n+1, 3). - Paul Barry, Mar 04 2003 a(n) = C(n+2, 4) + C(n+1, 4). - Paul Barry, Mar 13 2003 a(n) = Sum_{k=1..n} A000330(n-1). - Benoit Cloitre, Jun 15 2003 a(n) = n*C(n+1,3)/2 = C(n+1,3)*C(n+1,2)/(n+1). - Mitch Harris, Jul 06 2006 a(n) = A006011(n)/3 = A008911(n)/2 = A047928(n-1)/12 = A083374(n)/6. - Zerinvary Lajos, May 09 2007 a(n) = (1/2)*Sum_{1 <= x_1, x_2 <= n} (det V(x_1,x_2))^2 = (1/2)*Sum_{1 <= i,j <= n} (i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007 a(n) = C(n+1,3) + 2*C(n+1,4). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009 a(n) = (1/48)*sinh(2*arccosh(n))^2. - Artur Jasinski, Feb 10 2010 a(n) = n*A000292(n-1)/2. - Tom Copeland, Sep 13 2011 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Nov 29 2011 a(n) = (n-1)*A000217(n-1) - Sum_{i=0..n-2} (n-1-2*i)*A000217(i) for n > 1. - Bruno Berselli, Jun 22 2013 a(n) = C(n,2)*C(n+1,3) - C(n,3)*C(n+1,2). - J. M. Bergot, Sep 17 2013 a(n) = Sum_{k=1..n} ( (2k-n)* k(k+1)/2 ). - Wesley Ivan Hurt, Sep 26 2013 a(n) = floor(n^2/3) + 3*Sum_{k=1..n} k^2*floor((n-k+1)/3). - Mircea Merca, Feb 06 2014 Euler transform of length 2 sequence [6, -1]. - Michael Somos, May 28 2014 G.f. x^2*2F1(3,4;2;x). - R. J. Mathar, Aug 09 2015 Sum_{n>=2} 1/a(n) = 21 - 2*Pi^2 = 1.260791197821282762331... . - Vaclav Kotesovec, Apr 27 2016 a(n) = A080852(2,n-2). - R. J. Mathar, Jul 28 2016 a(n) = A046092(n) * A046092(n-1)/48 = A000217(n) * A000217(n-1)/3. - Bruce J. Nicholson, Jun 06 2017 E.g.f.: (1/12)*exp(x)*x^2*(6 + 6*x + x^2). - Stefano Spezia, Dec 07 2018 Sum_{n>=2} (-1)^n/a(n) = Pi^2 - 9 (See A002388). - Amiram Eldar, Jun 28 2020 EXAMPLE a(7) = 6*21 - (6*0 + 4*1 + 2*3 + 0*6 - 2*10 - 4*15) = 196. - Bruno Berselli, Jun 22 2013 G.f. = x^2 + 6*x^3 + 20*x^4 + 50*x^5 + 105*x^6 + 196*x^7 + 336*x^8 + ... MAPLE A002415 := proc(n) binomial(n^2, 2)/6 ; end proc: # Zerinvary Lajos, Jan 07 2008 MATHEMATICA Table[(n^4 - n^2)/12, {n, 0, 40}] (* Zerinvary Lajos, Mar 21 2007 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 1, 6, 20}, 40] (* Harvey P. Dale, Nov 29 2011 *) PROG (PARI) a(n) = n^2 * (n^2 - 1) / 12; (PARI) x='x+O('x^200); concat([0, 0], Vec(x^2*(1+x)/(1-x)^5)) \\ Altug Alkan, Mar 23 2016 (Magma) [n^2*(n^2-1)/12: n in [0..50]]; // Wesley Ivan Hurt, May 14 2014 (GAP) List([0..45], n->Binomial(n^2, 2)/6); # Muniru A Asiru, Dec 15 2018 CROSSREFS a(n) = ((-1)^n)*A053120(2*n, 4)/8 (one-eighth of fifth unsigned column of Chebyshev T-triangle, zeros omitted). Cf. A001296. Second row of array A103905. Third column of Narayana numbers A001263. Cf. A001079, A006011, A008911, A037270, A047819, A047928, A071253, A083374, A107891, A108741, A132592, A146311, A146312, A146313, A173115, A173116, A108279, A024206. Partial sums of A000330. The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937. Cf. A220212 for a list of sequences produced by the convolution of the natural numbers (A000027) with the k-gonal numbers. Cf. A002388, A051602, A114327. Sequence in context: A161699 A216175 A161409 * A052515 A067117 A267168 Adjacent sequences:  A002412 A002413 A002414 * A002416 A002417 A002418 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Typo in link fixed by Matthew Vandermast, Nov 22 2010 Redundant comment deleted and more detail on relationship with A000330 added by Joshua Zucker, Jan 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 7 08:05 EDT 2022. Contains 357270 sequences. (Running on oeis4.)