login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237616 a(n) = n*(n + 1)*(5*n - 4)/2. 28
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also 17-gonal (or heptadecagonal) pyramidal numbers.

This sequence is related to A226489 by 2*a(n) = n*A226489(n) - Sum_{i=0..n-1} A226489(i).

REFERENCES

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Pyramidal Number.

Index to sequences related to pyramidal numbers

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: x*(1 + 14*x) / (1 - x)^4.

For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(15*i+1). More generally, the sequence with the closed form n*(n+1)*(k*n-k+3)/6 is also given by Sum_{i=0..n-1} (n-i)*(k*i+1) for n>0.

a(n) = A104728(A001844(n-1)) for n>0.

Sum_{n>=1} 1/a(n) = (2*sqrt(5*(5 + 2*sqrt(5)))*Pi + 10*sqrt(5)*arccoth(sqrt(5)) + 25*log(5) - 16)/72 = 1.086617842136293176... . - Vaclav Kotesovec, Dec 07 2016

EXAMPLE

After 0, the sequence is provided by the row sums of the triangle:

1;

2,  16;

3,  32,  31;

4,  48,  62,  46;

5,  64,  93,  92,  61;

6,  80,  124, 138, 122, 76;

7,  96,  155, 184, 183, 152, 91;

8,  112, 186, 230, 244, 228, 182, 106;

9,  128, 217, 276, 305, 304, 273, 212, 121;

10, 144, 248, 322, 366, 380, 364, 318, 242, 136, etc.,

where (r = row index, c = column index):

T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.

MATHEMATICA

Table[n (n + 1) (5 n - 4)/2, {n, 0, 40}]

CoefficientList[Series[x (1 + 14 x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)

LinearRecurrence[{4, -6, 4, -1}, {0, 1, 18, 66}, 50] (* Harvey P. Dale, Jan 11 2015 *)

PROG

(MAGMA) [n*(n+1)*(5*n-4)/2: n in [0..40]];

(MAGMA) I:=[0, 1, 18, 66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014

(PARI) a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A051869, A104728.

Cf. sequences with formula n*(n+1)*(k*n-k+3)/6: A000217 (k=0), A000292 (k=1), A000330 (k=2), A002411 (k=3), A002412 (k=4), A002413 (k=5), A002414 (k=6), A007584 (k=7), A007585 (k=8), A007586 (k=9), A007587 (k=10), A050441 (k=11), A172073 (k=12), A177890 (k=13), A172076 (k=14), this sequence (k=15), A172078(k=16), A237617 (k=17), A172082 (k=18), A237618 (k=19), A172117(k=20), A256718 (k=21), A256716 (k=22), A256645 (k=23), A256646(k=24), A256647 (k=25), A256648 (k=26), A256649 (k=27), A256650(k=28).

Sequence in context: A165029 A264652 A010006 * A044156 A044537 A143859

Adjacent sequences:  A237613 A237614 A237615 * A237617 A237618 A237619

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Feb 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 30 03:42 EDT 2017. Contains 287305 sequences.