login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007585
10-gonal (or decagonal) pyramidal numbers: a(n) = n*(n + 1)*(8*n - 5)/6.
(Formerly M4791)
16
0, 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375, 1826, 2366, 3003, 3745, 4600, 5576, 6681, 7923, 9310, 10850, 12551, 14421, 16468, 18700, 21125, 23751, 26586, 29638, 32915, 36425, 40176, 44176, 48433, 52955, 57750
OFFSET
0,3
COMMENTS
Binomial transform of [1, 10, 17, 8, 0, 0, 0, ...] = (1, 11, 38, 90, ...). - Gary W. Adamson, Mar 18 2009
This sequence is related to A000384 by a(n) = n*A000384(n) - Sum_{i=0..n-1} A000384(i) and this is the case d=4 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/6. - Bruno Berselli, Apr 21 2010
For n>0, (a(n)) is the principal diagonal of the convolution array A213750. - Clark Kimberling, Jun 20 2012
From Ant King, Oct 30 2012: (Start)
The partial sums of the figurate decagonal numbers A001107.
For n>1, the digital roots of this sequence A010888(A007585(n)) form the purely periodic 27-cycle {1,2,2,9,4,4,8,6,6,7,8,8,6,1,1,5,3,3,4,5,5,3,7,7,2,9,9}.
For n>1, the units’ digits of this sequence A010879(A007585(n)) form the purely periodic 20-cycle {1,1,8,0,5,1,6,8,5,5,6,6,3,5,0,6,1,3,0,0}.
(End)
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
FORMULA
a(n) = (8*n-5)*binomial(n+1, 2)/3.
G.f.: x*(1+7*x)/(1-x)^4.
a(n) = (8*n^3 + 3*n^2 - 5*n)/6. - Vincenzo Librandi, Aug 01 2010
a(0)=0, a(1)=1, a(2)=11, a(3)=38, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 20 2011
From Ant King, Oct 30 2012: (Start)
a(n) = a(n-1) + n*(4*n-3).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 8.
a(n) = (n+1)*(2*A001107(n) + n)/6.
a(n) = A000292(n) + 7*A000292(n-1).
a(n) = A007584(n) + A000292(n-1).
a(n) = A000217(n) + 8*A000292(n-1).
a(n) = binomial(n+2,3) + 7*binomial(n+1,3).
Sum_{n>=1} 1/a(n) = 6*(4*pi*(sqrt(2)-1) + 4*(8-sqrt(2))*log(2) + 8*sqrt(2)*log(2-sqrt(2))-5)/65 = 1.145932345...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(8*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 27*x + 8*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017
MAPLE
seq(n*(n+1)*(8*n-5)/6, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[n(n+1)(8n-5)/6, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 11, 38}, 40] (* Harvey P. Dale, Dec 20 2011 *)
PROG
(PARI) a(n)=(8*n^3+3*n^2-5*n)/6 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [n*(n+1)*(8*n-5)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(8*n-5)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(8*n-5)/6); # G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A000384.
Cf. A093565 ((8, 1) Pascal, column m=3). Partial sums of A001107.
Cf. similar sequences listed in A237616.
Sequence in context: A139276 A010002 A143109 * A024202 A213775 A133258
KEYWORD
nonn,easy,nice
STATUS
approved