login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093565 (8,1) Pascal triangle. 15
1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The array F(8;n,m) gives in the columns m>=1 the figurate numbers based on A017077, including the decagonal numbers A001107,(see the W. Lang link).
This is the eighth member, d=8, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-4, for d=1..7.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+7*z)/(1-(1+x)*z).
The SW-NE diagonals give A022098(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 7. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
REFERENCES
Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
LINKS
FORMULA
a(n, m)=F(8;n-m, m) for 0<= m <= n, otherwise 0, with F(8;0, 0)=1, F(8;n, 0)=8 if n>=1 and F(8;n, m):=(8*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=8 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+7*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 7*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 17*x + 10*x^2/2! + x^3/3!) = 8 + 25*x + 52*x^2/2! + 90*x^3/3! + 140*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
EXAMPLE
Triangle begins
[1];
[8, 1];
[8, 9, 1];
[8, 17, 10, 1];
...
PROG
(Haskell)
a093565 n k = a093565_tabl !! n !! k
a093565_row n = a093565_tabl !! n
a093565_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [8, 1]
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
Row sums: A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
The column sequences give for m=1..9: A017077, A001107 (decagonal), A007585, A051797, A051878, A050404, A052226, A056001, A056122.
Cf. A093644 (d=9).
Sequence in context: A092618 A151786 A094770 * A081777 A198988 A098367
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Apr 22 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 05:19 EDT 2024. Contains 371782 sequences. (Running on oeis4.)