login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007586 11-gonal (or hendecagonal) pyramidal numbers: n*(n+1)*(3*n-2)/2.
(Formerly M4835)
10
0, 1, 12, 42, 100, 195, 336, 532, 792, 1125, 1540, 2046, 2652, 3367, 4200, 5160, 6256, 7497, 8892, 10450, 12180, 14091, 16192, 18492, 21000, 23725, 26676, 29862, 33292, 36975, 40920, 45136, 49632, 54417, 59500, 64890, 70596, 76627, 82992, 89700, 96760, 104181 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Starting with 1 equals binomial transform of [1, 11, 19, 9, 0, 0, 0, ...]. - Gary W. Adamson, Nov 02 2007

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: x*(1+8*x)/(1-x)^4.

a(0)=0, a(1)=1, a(2)=12, a(3)=42; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Apr 09 2012

a(n) = Sum_{i=0..n-1}  (n-i)*(9*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014

EXAMPLE

From Vincenzo Librandi, Feb 12 2014: (Start)

After 0, the sequence is provided by the row sums of the triangle (see above, third formula):

  1;

  2, 10;

  3, 20, 19;

  4, 30, 38, 28;

  5, 40, 57, 56, 37;

  6, 50, 76, 84, 74, 46; etc. (End)

MAPLE

seq(n*(n+1)*(3*n-2)/2, n=0..45); # G. C. Greubel, Aug 30 2019

MATHEMATICA

Table[n(n+1)(3n-2)/2, {n, 0, 45}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 12, 42}, 45] (* Harvey P. Dale, Apr 09 2012 *)

CoefficientList[Series[x(1+8x)/(1-x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Feb 12 2014 *)

PROG

(MAGMA) I:=[0, 1, 12, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014

(PARI) a(n)=n*(n+1)*(3*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015

(Sage) [n*(n+1)*(3*n-2)/2 for n in (0..45)] # G. C. Greubel, Aug 30 2019

(GAP) List([0..45], n-> n*(n+1)*(3*n-2)/2); # G. C. Greubel, Aug 30 2019

CROSSREFS

Cf. A051682.

Cf. A093644 ((9, 1) Pascal, column m=3).

Cf. similar sequences listed in A237616.

Sequence in context: A090554 A009948 A193068 * A228391 A122973 A074356

Adjacent sequences:  A007583 A007584 A007585 * A007587 A007588 A007589

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

More terms from Vincenzo Librandi, Feb 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 03:24 EDT 2019. Contains 328291 sequences. (Running on oeis4.)