login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007586 11-gonal (or hendecagonal) pyramidal numbers: n(n+1)(3n-2)/2.
(Formerly M4835)
9
0, 1, 12, 42, 100, 195, 336, 532, 792, 1125, 1540, 2046, 2652, 3367, 4200, 5160, 6256, 7497, 8892, 10450, 12180, 14091, 16192, 18492, 21000, 23725, 26676, 29862, 33292, 36975, 40920, 45136, 49632, 54417, 59500, 64890, 70596, 76627, 82992, 89700, 96760, 104181 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Starting with 1 equals binomial transform of [1, 11, 19, 9, 0, 0, 0,...]. - Gary W. Adamson, Nov 02 2007

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

G.f.: x*(1+8*x)/(1-x)^4.

a(0)=0, a(1)=1, a(2)=12, a(3)=42; for n>3, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Apr 09 2012

a(n) = sum( (n-i)*(9*i+1), i=0..n-1 ), with a(0)=0. - Bruno Berselli, Feb 10 2014

EXAMPLE

After 0, the sequence is provided by the row sums of the triangle (see above, third formula):

1;

2, 10;

3, 20, 19;

4, 30, 38, 28;

5, 40, 57, 56, 37;

6, 50, 76, 84, 74, 46, etc.

- Vincenzo Librandi, Feb 12 2014

MAPLE

restart: a:=n->sum(sum(k, j=3..n), k=0..n): seq(a(n), n=1..53):b:=n->sum(sum(n, j=1..n), k=0..n): seq(a(n), n=1..53):c:=b+a:seq(c(n), n=0..35); # Zerinvary Lajos, Aug 24 2008

a:=n->add(binomial(n, 2)+add(n, j=3..n), j=2..n):seq(a(n), n=1..40); # Zerinvary Lajos, Aug 27 2008

MATHEMATICA

Table[n(n+1)(3n-2)/2, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 12, 42}, 40] (* Harvey P. Dale, Apr 09 2012 *)

CoefficientList[Series[x (1 + 8 x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)

PROG

(MAGMA) I:=[0, 1, 12, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014

(PARI) a(n)=n*(n+1)*(3*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A051682.

Cf. A093644 ((9, 1) Pascal, column m=3).

Cf. similar sequences listed in A237616.

Sequence in context: A090554 A009948 A193068 * A228391 A122973 A074356

Adjacent sequences:  A007583 A007584 A007585 * A007587 A007588 A007589

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, R. K. Guy.

EXTENSIONS

More terms from Vincenzo Librandi, Feb 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 11:27 EDT 2017. Contains 290835 sequences.