This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010002 a(0) = 1, a(n) = 9*n^2 + 2 for n>0. 2
 1, 11, 38, 83, 146, 227, 326, 443, 578, 731, 902, 1091, 1298, 1523, 1766, 2027, 2306, 2603, 2918, 3251, 3602, 3971, 4358, 4763, 5186, 5627, 6086, 6563, 7058, 7571, 8102, 8651, 9218, 9803, 10406, 11027, 11666, 12323, 12998, 13691, 14402, 15131, 15878, 16643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=1, s=2. After 1, all terms are in A000408. [Bruno Berselli, Feb 06 2012] The identity (18*n^2+2)^2-(9*n^2+2)*(6*n)^2 = 4 can be written as A010008(n+1)^2-a(n+1)*A008588(n+1)^2 = 4. - Vincenzo Librandi, Feb 07 2012 LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (1+x)*(1+7*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012 E.g.f.: (x*(x+1)*9+2)*e^x-1. - Gopinath A. R., Feb 14 2012 MATHEMATICA Join[{1}, 9 Range[43]^2 + 2] (* Bruno Berselli, Feb 06 2012 *) Join[{1}, LinearRecurrence[{3, -3, 1}, {11, 38, 83}, 50]] (* Vincenzo Librandi, Aug 03 2015 *) PROG (PARI) A010002(n)=9*n^2+2-!n   \\ M. F. Hasler, Feb 14 2012 (MAGMA) [1] cat [9*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015 CROSSREFS Cf. A206399. Sequence in context: A072313 A063146 A139276 * A143109 A007585 A024202 Adjacent sequences:  A009999 A010000 A010001 * A010003 A010004 A010005 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Bruno Berselli, Feb 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 17:54 EDT 2019. Contains 322310 sequences. (Running on oeis4.)