OFFSET
0,3
COMMENTS
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (thirteenth row of the table).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1+12*x)/(1-x)^4.
a(n) = Sum_{i=0..n} A051867(i).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 04 2012
a(n) = Sum_{i=0..n-1} (n-i)*(13*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 42*x + 13*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
MAPLE
seq(n*(n+1)*(13*n-10)/6, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
CoefficientList[Series[x*(1+12*x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 04 2012 *)
Table[n*(n-1)*(13*n-23)/6, {n, 40}] (* G. C. Greubel, Aug 30 2019 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 58}, 40] (* Harvey P. Dale, Dec 21 2022 *)
PROG
(Magma) I:=[0, 1, 16, 58]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
(Magma) [n*(n+1)*(13*n-10)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
(PARI) vector(40, n, n*(n-1)*(13*n-23)/6) \\ G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(13*n-10)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(13*n-10)/6); # G. C. Greubel, Aug 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 14 2010
STATUS
approved