This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225922 a(n) = least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n)-1) for n > 1, where f(n) = 1/(n+7) and a(1) = 1. 1
 1, 16, 58, 176, 507, 1436, 4043, 11359, 31890, 89506, 251193, 704933, 1978258, 5551574, 15579326, 43720081, 122691130, 344306598 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: a(n) is linearly recurrent. See A225918 for details. LINKS EXAMPLE a(1) = 1 by decree; a(2) = 15 because 1/8 + ... + 1/14 < 1 < 1/8 + ... + 1/15, so that a(3) = 58 because 1/16 + ... + 1/57 < 1/8 + ... + 1/15 < 1/16 + ... + 1/58. Successive values of a(n) yield a chain: 1 < 1/8 + ... + 1/15 < 1/16 + ... + 1/58 < 1/59 + ... + 1/176 < ... Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.8063..., it appears that lim b(n) = log(R) = 1.03186... MATHEMATICA nn = 11; f[n_] := 1/(n + 7); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]] CROSSREFS Cf. A225918. Sequence in context: A253428 A005905 A177890 * A235510 A220974 A063521 Adjacent sequences:  A225919 A225920 A225921 * A225923 A225924 A225925 KEYWORD nonn,more AUTHOR Clark Kimberling, May 21 2013 EXTENSIONS a(10)-a(17) from Robert G. Wilson v, May 22 2013 a(18) from Robert G. Wilson v, Jun 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:34 EDT 2018. Contains 316275 sequences. (Running on oeis4.)