OFFSET
0,3
COMMENTS
Generated by formula: n*(n+1)*(2*d*n-2*d+3)/6 with d=9.
This sequence is related to A051682 by a(n) = n*A051682(n) - Sum_{i=0..n-1} A051682(i); in fact this is the case d=9 in the identity n*(n*(d*n-d+2)/2) - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)*(2*d*n -2*d + 3)/6. - Bruno Berselli, Apr 16 2012
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(0)=0, a(1)=1, a(2)=21, a(3)=78; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 29 2011
G.f.: x*(1+17*x)/(1-x)^4. - Harvey P. Dale, Jun 29 2011
a(n) = Sum_{i=0..n-1} (n-i)*(18*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(2 + 19*x + 6*x^2)*exp(x)/2. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(3*sqrt(3)*Pi + 9*log(3) + 12*log(2) - 5)/55.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(6*Pi + 6*sqrt(3)*log(sqrt(3)+2) - 16*log(2) + 5)/55. (End)
MAPLE
seq(n*(n+1)*(6*n-5)/2, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[(18n^3+3n^2-15n)/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 21, 78}, 40] (* Harvey P. Dale, Jun 29 2011 *)
CoefficientList[Series[x*(1+17*x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 02 2014 *)
PROG
(Magma) [(18*n^3+3*n^2-15*n)/6: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014
(PARI) vector(40, n, n*(n-1)*(6*n-11)/2) \\ G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(6*n-5)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(6*n-5)/2); # G. C. Greubel, Aug 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 25 2010
STATUS
approved