login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172082
a(n) = n*(n+1)*(6*n-5)/2.
4
0, 1, 21, 78, 190, 375, 651, 1036, 1548, 2205, 3025, 4026, 5226, 6643, 8295, 10200, 12376, 14841, 17613, 20710, 24150, 27951, 32131, 36708, 41700, 47125, 53001, 59346, 66178, 73515, 81375, 89776, 98736, 108273, 118405, 129150, 140526
OFFSET
0,3
COMMENTS
Generated by formula: n*(n+1)*(2*d*n-2*d+3)/6 with d=9.
This sequence is related to A051682 by a(n) = n*A051682(n) - Sum_{i=0..n-1} A051682(i); in fact this is the case d=9 in the identity n*(n*(d*n-d+2)/2) - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)*(2*d*n -2*d + 3)/6. - Bruno Berselli, Apr 16 2012
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
LINKS
Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
FORMULA
a(0)=0, a(1)=1, a(2)=21, a(3)=78; for n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 29 2011
G.f.: x*(1+17*x)/(1-x)^4. - Harvey P. Dale, Jun 29 2011
a(n) = Sum_{i=0..n-1} (n-i)*(18*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(2 + 19*x + 6*x^2)*exp(x)/2. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(3*sqrt(3)*Pi + 9*log(3) + 12*log(2) - 5)/55.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(6*Pi + 6*sqrt(3)*log(sqrt(3)+2) - 16*log(2) + 5)/55. (End)
MAPLE
seq(n*(n+1)*(6*n-5)/2, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[(18n^3+3n^2-15n)/6, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 21, 78}, 40] (* Harvey P. Dale, Jun 29 2011 *)
CoefficientList[Series[x*(1+17*x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 02 2014 *)
PROG
(Magma) [(18*n^3+3*n^2-15*n)/6: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014
(PARI) vector(40, n, n*(n-1)*(6*n-11)/2) \\ G. C. Greubel, Aug 30 2019
(Sage) [n*(n+1)*(6*n-5)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> n*(n+1)*(6*n-5)/2); # G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A051682.
Cf. similar sequences listed in A237616.
Sequence in context: A045559 A144314 A010009 * A296970 A068085 A135945
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 25 2010
STATUS
approved