The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051682 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2. 67
 0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Floor van Lamoen, Jul 21 2001: (Start) Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,1,... The spiral begins:          15        16  14      17  3   13    18  4   2   12      5   0   1   11    6   7   8   9   10 (End) (1), (4+7), (7+10+13), (10+13+16+19), ... - Jon Perry, Sep 10 2004 This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - T. D. Noe, Apr 13 2011 Sequence found by reading the line from 0, in the direction 0, 11, ... and the parallel line from 1, in the direction 1, 30, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 18 2012 Starting with offset 1, the sequence is the binomial transform of (1, 10, 9, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6. Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT]. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = n*(9*n-7)/2. G.f.: x*(1+8*x)/(1-x)^3. Row sums of triangle A131432. - Gary W. Adamson, Jul 10 2007 a(n) = 9*n + a(n-1) - 8 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010 a(0)=0, a(1)=1, a(2)=11, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 07 2012 a(n) = A218470(9n). - Philippe Deléham, Mar 27 2013 a(9*a(n)+37*n+1) = a(9*a(n)+37*n) + a(9*n+1). - Vladimir Shevelev, Jan 24 2014 a(n+y) - a(n-y-1) = (a(n+x) - a(n-x-1))*(2*y+1)/(2*x+1), 0 <= x < n, y <= x, a(0)=0. - Gionata Neri, May 03 2015 a(n) = A000217(n-1) + A000217(3*n-2) - A000217(n-2). - Charlie Marion, Dec 21 2019 MAPLE a:=0:a:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+9 od: seq(a[n], n=0..43); # Zerinvary Lajos, Feb 18 2008 MATHEMATICA s=0; lst={s}; Do[s+=n++ +1; AppendTo[lst, s], {n, 0, 6!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *) Table[n (9n-7)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 11}, 51] (* Harvey P. Dale, May 07 2012 *) PROG (PARI) a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011 (MAGMA) [n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015 CROSSREFS First differences of A007586. Cf. A093644 ((9, 1) Pascal, column m=2). Partial sums of A017173. Cf. A004188, A131432, A195160, A218470. Sequence in context: A162734 A163060 A247433 * A109943 A303856 A137411 Adjacent sequences:  A051679 A051680 A051681 * A051683 A051684 A051685 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 13:00 EDT 2020. Contains 338012 sequences. (Running on oeis4.)