OFFSET
0,9
LINKS
FORMULA
Number triangle S(n, k)=T(n-k, k), k<n, S(n, n)=1, 0 otherwise, where T(n, k)=(n/2)sum{j=0..floor(n/2), C(n-j, j)(-1)^j*(2k)^(n-2j)}.
Columns have g.f. x^k(1-kx)/(1-2kx+x^2).
Also, square array if(n=0, 1, T(n, k)) read by antidiagonals.
EXAMPLE
As a number triangle, rows begin:
{1},
{0,1},
{-1,1,1},
{0,1,2,1},
...
As a square array, rows begin
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
-1, 1, 7, 17, 31, ...
0, 1, 26, 99, 244, ...
1, 1, 97, 577, 1921, ...
MATHEMATICA
T[n_, k_] := SeriesCoefficient[x^k (1 - k x)/(1 - 2 k x + x^2), {x, 0, n}];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Dec 02 2004
STATUS
approved