login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058587
McKay-Thompson series of class 24d for Monster.
3
1, -1, 3, 3, 6, -3, 10, 1, 15, 0, 24, 3, 37, -9, 57, 12, 84, -12, 118, 9, 165, -6, 228, 12, 316, -27, 432, 42, 582, -42, 776, 28, 1023, -24, 1344, 45, 1757, -82, 2283, 111, 2946, -111, 3774, 91, 4812, -84, 6108, 123, 7725, -208, 9732, 279, 12204, -282, 15240, 234, 18957, -222, 23508, 321, 29065, -495, 35826, 630, 44022, -642
OFFSET
0,3
COMMENTS
This sequence is A112163 with alternating signs: T24d(q) = i*T24e(i*q). - G. A. Edgar, Mar 13 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..149 from G. A. Edgar)
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/2)*(eta(q^4)^3*eta(q^6)^3 / (eta(q^2)^3*eta(q^12)^3) - eta(q^2)^3*eta(q^12)^3 / (eta(q^4)^3*eta(q^6)^3)) in powers of q. - G. A. Edgar, Mar 13 2017
EXAMPLE
T24d = 1/q - q + 3*q^3 + 3*q^5 + 6*q^7 - 3*q^9 + 10*q^11 + q^13 + 15*q^15 + ...
MATHEMATICA
CoefficientList[Series[(QPochhammer[x^4]^3*QPochhammer[x^6]^3 / (QPochhammer[x^2]^3 * QPochhammer[x^12]^3) - x * QPochhammer[x^2]^3 * QPochhammer[x^12]^3 / (QPochhammer[x^4]^3 * QPochhammer[x^6]^3)), {x, 0, 66}], x] (* Indranil Ghosh, Mar 14 2017 *)
PROG
(PARI) q='q+O('q^66); Vec( (eta(q^4)^3*eta(q^6)^3 / (eta(q^2)^3*eta(q^12)^3) - q*eta(q^2)^3*eta(q^12)^3 / (eta(q^4)^3*eta(q^6)^3)) ) \\ Joerg Arndt, Mar 13 2017
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from G. A. Edgar, Mar 13 2017
STATUS
approved