login
A308083
G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 + x^5 * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).
2
1, 1, 1, 1, 1, 1, 3, 3, 6, 3, 9, 5, 12, 11, 11, 11, 22, 14, 23, 19, 29, 24, 41, 25, 40, 41, 48, 43, 66, 45, 71, 67, 86, 68, 95, 73, 113, 110, 118, 107, 157, 115, 162, 148, 182, 159, 225, 164, 235, 229, 247, 227, 296, 244, 328, 297, 357, 298, 413, 352, 452, 409, 436, 415, 575
OFFSET
1,7
COMMENTS
Shifts 5 places left when inverse Moebius transform applied twice.
FORMULA
a(1) = ... = a(5) = 1; a(n+5) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).
MATHEMATICA
a[n_] := a[n] = Sum[DivisorSigma[0, (n - 5)/d] a[d], {d, Divisors[n - 5]}]; a[1] = a[2] = a[3] = a[4] = a[5] = 1; Table[a[n], {n, 1, 65}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 11 2019
STATUS
approved