%I #30 Feb 14 2018 03:34:59
%S 1,-1,3,3,6,-3,10,1,15,0,24,3,37,-9,57,12,84,-12,118,9,165,-6,228,12,
%T 316,-27,432,42,582,-42,776,28,1023,-24,1344,45,1757,-82,2283,111,
%U 2946,-111,3774,91,4812,-84,6108,123,7725,-208,9732,279,12204,-282,15240,234,18957,-222,23508,321,29065,-495,35826,630,44022,-642
%N McKay-Thompson series of class 24d for Monster.
%C This sequence is A112163 with alternating signs: T24d(q) = i*T24e(i*q). - _G. A. Edgar_, Mar 13 2017
%H G. C. Greubel, <a href="/A058587/b058587.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..149 from G. A. Edgar)
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F Expansion of q^(1/2)*(eta(q^4)^3*eta(q^6)^3 / (eta(q^2)^3*eta(q^12)^3) - eta(q^2)^3*eta(q^12)^3 / (eta(q^4)^3*eta(q^6)^3)) in powers of q. - _G. A. Edgar_, Mar 13 2017
%e T24d = 1/q - q + 3*q^3 + 3*q^5 + 6*q^7 - 3*q^9 + 10*q^11 + q^13 + 15*q^15 + ...
%t CoefficientList[Series[(QPochhammer[x^4]^3*QPochhammer[x^6]^3 / (QPochhammer[x^2]^3 * QPochhammer[x^12]^3) - x * QPochhammer[x^2]^3 * QPochhammer[x^12]^3 / (QPochhammer[x^4]^3 * QPochhammer[x^6]^3)), {x, 0, 66}], x] (* _Indranil Ghosh_, Mar 14 2017 *)
%o (PARI) q='q+O('q^66); Vec( (eta(q^4)^3*eta(q^6)^3 / (eta(q^2)^3*eta(q^12)^3) - q*eta(q^2)^3*eta(q^12)^3 / (eta(q^4)^3*eta(q^6)^3)) ) \\ _Joerg Arndt_, Mar 13 2017
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%K sign
%O 0,3
%A _N. J. A. Sloane_, Nov 27 2000
%E More terms from _G. A. Edgar_, Mar 13 2017