login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058584 McKay-Thompson series of class 24a for Monster. 1
1, -5, -5, -9, -14, -19, -34, -55, -69, -104, -164, -209, -283, -413, -539, -712, -968, -1248, -1642, -2167, -2731, -3526, -4592, -5736, -7244, -9255, -11520, -14378, -18018, -22238, -27556, -34132, -41701, -51184, -62900, -76323, -92771, -113002, -136421, -164673, -198842, -238627 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..1000

D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).

Index entries for McKay-Thompson series for Monster simple group

FORMULA

Expansion of A - 4*q/A, where A = q^(1/2)*(eta(q)*eta(q^3)/(eta(q^4)* eta(q^12))), in powers of q. - G. C. Greubel, Jun 21 2018

a(n) ~ -exp(sqrt(2*n/3)*Pi) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018

EXAMPLE

T24a = 1/q - 5*q - 5*q^3 - 9*q^5 - 14*q^7 - 19*q^9 - 34*q^11 - 55*q^13 - ...

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q]*eta[q^3]/( eta[q^4]*eta[q^12])); a:= CoefficientList[Series[A - 4*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 21 2018 *)

PROG

(PARI) q='q+O('q^50); A = (eta(q)*eta(q^3)/(eta(q^4)* eta(q^12))); Vec(A - 4*q/A) \\ G. C. Greubel, Jun 21 2018

CROSSREFS

Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

Cf. A058491.

Sequence in context: A011986 A047880 A058491 * A147197 A323301 A147047

Adjacent sequences:  A058581 A058582 A058583 * A058585 A058586 A058587

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 27 2000

EXTENSIONS

Terms a(12) onward added by G. C. Greubel, Jun 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 17:05 EST 2019. Contains 319335 sequences. (Running on oeis4.)