OFFSET
1,5
COMMENTS
From Petros Hadjicostas, Oct 09 2019: (Start)
The old references had some typos, some of which were corrected in the recent ones. Few additional typos were corrected here from the recent references. Here are some of the changes: T(5,2) = 31 --> 51; T(5,4) = 21 --> 26; sum of row n=5 is 185 (not 160 or 165); T(8,3) = 686515 --> 803583; T(8, 6) = 19904 --> 19903, and some others.
This triangular array is the same as A058710 except that it has no row n = 0 and no column k = 0.
(End)
LINKS
W. M. B. Dukes, Tables of matroids.
W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
FORMULA
From Petros Hadjicostas, Oct 09 2019: (Start)
T(n,1) = 1 for n >= 1.
T(n,3) = Sum_{i = 3..n} Stirling2(n,i) * (A056642(i) - 1) = Sum_{i = 3..n} A008277(n,i) * A058720(i,3) for n >= 3.
T(n,k) = Sum_{i = k..n} Stirling2(n,i) * A058720(i,k) for n >= k. [Dukes (2004), p. 3; see the equation with the Stirling numbers of the second kind.]
(End)
EXAMPLE
Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 1;
1, 4, 1;
1, 14, 11, 1;
1, 51, 106, 26, 1;
1, 202, 1232, 642, 57, 1;
1, 876, 22172, 28367, 3592, 120, 1;
1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
...
KEYWORD
AUTHOR
N. J. A. Sloane, Dec 31 2000
EXTENSIONS
Several values corrected by Petros Hadjicostas, Oct 09 2019
STATUS
approved