login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256069
Number T(n,k) of inequivalent n X n matrices with entry set {1,...,k}, where equivalence means permutations of rows or columns; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
3
1, 0, 1, 0, 1, 5, 0, 1, 34, 633, 0, 1, 315, 89544, 7520386, 0, 1, 5622, 64780113, 79587235420, 20435529209470, 0, 1, 251608, 302752112913, 9177112514843320, 28079504654455279395, 19740907671252532135134
OFFSET
0,6
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246106(n,k-i).
EXAMPLE
T(2,2) = 5:
[1 1] [1 2] [1 2] [1 1] [1 2]
[1 2] [2 2] [1 2] [2 2] [2 1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 5;
0, 1, 34, 633;
0, 1, 315, 89544, 7520386;
0, 1, 5622, 64780113, 79587235420, 20435529209470;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [[]],
`if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
b(n-i*j, i-1))[], j=1..n/i)]))
end:
A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
/mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..8);
CROSSREFS
Cf. A246106.
Main diagonal gives A256070.
Sequence in context: A227322 A216718 A184180 * A356652 A267480 A099221
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 13 2015
STATUS
approved