The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256071 Number of ordered ways to write n = p + x*(3*x-1)/2, where p is prime or zero, and x is an integer. 4
 1, 1, 2, 2, 2, 3, 1, 4, 2, 2, 2, 1, 4, 2, 3, 3, 1, 3, 4, 3, 3, 1, 3, 2, 4, 3, 3, 1, 3, 4, 2, 4, 2, 3, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 3, 4, 3, 2, 4, 3, 1, 3, 3, 5, 4, 3, 2, 3, 4, 5, 3, 2, 4, 4, 4, 2, 3, 2, 5, 4, 3, 3, 4, 5, 5, 3, 4, 3, 3, 4, 5, 4, 4, 5, 3, 3, 3, 3, 6, 3, 3, 2, 2, 4, 7, 3, 3, 3, 4, 5, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: a(n) > 0 for all n. Moreover, each nonnegative integer n is either an odd prime, or a generalized pentagonal number, or the sum of an odd prime and a generalized pentagonal number. This is similar to the author's earlier conjecture on sums of primes and triangular numbers (see the reference and also A132399). The conjecture has been verified for all n = 0..10^9. REFERENCES Zhi-Wei Sun, On sums of primes and triangular numbers, J. Comb. Number Theory 1(2009), 65-76. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 Zhi-Wei Sun, On sums of primes and triangular numbers, arXiv:0803.3737 [math.NT], 2008-2009. Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015. EXAMPLE a(11) = 1 since 11 = 11 + 0*(3*0-1)/2 with 11 prime. a(15) = 1 since 15 = 0 + (-3)*(3*(-3)-1)/2. a(50) = 1 since 50 = 43 + (-2)*(3*(-2)-1)/2 with 43 prime. MATHEMATICA P[n_]:=(n==0)||PrimeQ[n] Do[r=0; Do[If[P[n-x(3x-1)/2], r=r+1], {x, -Floor[(Sqrt[24n+1]-1)/6], Floor[(Sqrt[24n+1]+1)/6]}]; Print[n, " ", r]; Label[aa]; Continue, {n, 0, 100}] PROG (PARI) a(n)=if(n==0, return(1)); sum(x=1, (1+sqrt(24*n+1))\6, isprime(n-x*(3*x-1)/2))+sum(x=0, (sqrt(24*n+1)-1)\6, isprime(n-x*(3*x+1)/2))+ispolygonal(n, 5)+(x->3*x^2+x==2*n)(round((sqrt(24*n+1)-1)/6)) \\ Charles R Greathouse IV, Apr 07 2015 CROSSREFS Cf. A000040, A001318, A132399, A256119. Sequence in context: A135151 A256855 A273943 * A248808 A233206 A014843 Adjacent sequences:  A256068 A256069 A256070 * A256072 A256073 A256074 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:36 EDT 2021. Contains 343156 sequences. (Running on oeis4.)