login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256070
Number of inequivalent n X n matrices with entry set {1,...,n}, where equivalence means permutations of rows or columns.
3
1, 1, 5, 633, 7520386, 20435529209470, 19740907671252532135134, 10077866175951324796988844418739012, 3855174405512686506030123555473042980898031518176, 1492231601551989489818761885384738502799149242563553845787532236092
OFFSET
0,3
FORMULA
a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * A246106(n,n-i).
EXAMPLE
a(2) = 5:
[1 1] [1 2] [1 2] [1 1] [1 2]
[1 2] [2 2] [1 2] [2 2] [2 1].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [[]],
`if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
b(n-i*j, i-1))[], j=1..n/i)]))
end:
A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
/mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
end:
a:= n-> add(A(n, n-i)*(-1)^i*binomial(n, i), i=0..n):
seq(a(n), n=0..10);
CROSSREFS
Main diagonal of A256069.
Sequence in context: A209589 A060758 A348081 * A203339 A253690 A068421
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 13 2015
STATUS
approved