This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Fa

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Fa


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


f.c.c. lattice , sequences related to :
f.c.c. lattice, home page for
f.c.c. lattice, animals in: A006194, A007198, A007199, A038172, A038173, A038174, A039742
f.c.c. lattice, coordination sequence for: A005901*, A005902*
f.c.c. lattice, norms: A110907
f.c.c. lattice, orbits on points: A008368
f.c.c. lattice, polygons on: A001337, A002899, A005398
f.c.c. lattice, series expansions for: (1) A001407, A002165, A002166, A002892, A002918, A002921, A002924, A003205, A003209, A003491, A003495, A003498
f.c.c. lattice, series expansions for: (2) A006806, A006812, A047712
f.c.c. lattice, sublattices: A159842
f.c.c. lattice, theta series of: A004015*, A005884, A005885, A005886, A005887, A008663, A008664
f.c.c. lattice, walks on: (1) A000765, A000766, A000767, A000768, A001336, A003287, A003288, A005543, A005544, A005545, A005546, A005547
f.c.c. lattice, walks on: (2) A005548, A001337, A293237
f.c.c. lattice, walks on: see also f.c.c. lattice, animals in
f.c.c. lattice: see also A214813

fabrics: A005441
face-centered cubic lattice: see f.c.c. lattice

factorial base representation , sequences related to :
factorial base representation: A007623* (digits concatenated), A108731 (digits as row of a table).
-, concatenation of x and y: A085215*, A085219
-, differences in digits: A230415*, A230419, A231713
-, digit products: A208575*, A227153, A227154, A231715
-, digit sum: A034968
-, number of distinct nonzero digits: A275806
-, number of maximal digits: A260736
-, number of nonzero digits: A060130
-, number of occurrences of most frequent nonzero digit: A264990
-, number of ones, zeros: A257511, A257510
-, number of significant digits: A084558
-, number of trailing zeros: A055881*, A230403
- of noninteger constants (a.k.a. factoriadic or harmonic expansion): c = Sum_{n>=1} a(n)/n!, a(n) as large as possible:
A075874: Pi (with a(0)=3), A007514: Pi (with a(1)=0), A068450: sqrt(Pi), A068452: Pi^2, A068448: log(Pi), A068449: log(Pi/2),
A096622: euler gamma, A054977: e=exp(1), A067840: e^2, A068453: sqrt(e), A009949: sqrt(2), A067881: sqrt(3), A068446: sqrt(5),
A320839: sqrt(7), A071856: sqrt(2 ln(2)), A068462: 2^(1/3), A067882: log(2), A322334: log(3), A322333: log(5), A068460: log(7),
A068461: log(11), A068451: Golden ratio, A322119: -1/(Golden Ratio), A068463: Gamma(3/4), A068464: Gamma(1/4), A067279: zeta(2),
A067277: zeta(3), A068447: zeta(4), A068454: zeta(5), A068455: zeta(6), A068456: zeta(7), A068457: zeta(8), A068458: zeta(9),
A068459: zeta(10).
-, position of the rightmost one, zero: A257261, A257260
-, prime-encodings of related polynomials: A276076, A275734, A275735, A275725, A275733
-, shift dispersion arrays: A276955, A257505
-, shift operations: A153880, A231720, A255411, A257684, A220655, A266193
-, the largest digit: A246359
-, the least significant digit: A000035
-, the most significant digit: A099563, A257686
-, the most significant digit discarded: A257687
-, the smallest nonzero digit missing, present: A257079, A257679
-, unit fraction expansion: A294168, A276350, A299020
-, with pattern, any nonzero digit occurs at most once: A265349
-, with pattern, at least one nonzero digit occurs more than once: A265350
-, with pattern, digits in descending sequence ...321: A033312
-, with pattern, digit sum is even, odd: A227148, A227149
-, with pattern, no ones: A255411
-, with pattern, no zeros: A227157*, A071156, A120696, A231716
-, with pattern, number of nonzero digits is even, odd: A227130, A227132
-, with pattern, number of ones is k=0,1,2,3: A255411, A255341, A255342, A255343
-, with pattern, number of trailing zeros + 2 is prime, composite: A232741, A232742
-, with pattern, number of trailing zeros is even, odd: A232744, A232745
-, with pattern, one 1 and the rest zeros: A000142
-, with pattern, only one nonzero digit: A051683
-, with pattern, palindromes: A046807
-, with pattern, repunits: A007489
-, with pattern, the smallest missing nonzero digit is k=1,2,3: A255411, A257262, A257263
factorial numbers , sequences related to :
factorial numbers n!: A000142*
factorial numbers, !n: A003422*
factorial numbers, alternating: A005165*
factorial numbers, as a product of smaller factorials: A034878, A075082
factorial numbers, as a sum of two triangular numbers: A180590, A152089, A171099
factorial numbers, differences of: A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023047, A047920
factorial numbers, divisibility of: A011776, A011777, A011778
factorial numbers, double, n!!: A000165*, A001147*, A006882*
factorial numbers, double, n!!: see also A007919, A007922, A019513, A045766
factorial numbers, k-factorials, or n!k (n!, n!!, n!!!, ...): A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662 (n!4), n!5: A085157, n!6: A085158, n!7: A114799, n!8: A114800, n!9: A114806
factorial numbers, last nonzero digit in various bases (3-16): A136690, A136691, A136692, A136693, A136694, A136695, A136696, A008904*, A136697, A136698, A136699, A136700, A136701, A136702
factorial numbers, left, !n: A003422*
factorial numbers, n-factorials (1): A000407, A005329, A028687, A028688, A028692, A028693, A028694, A034829, A034830, A034831, A034832, A034833, A034834, A034835
factorial numbers, n-factorials (2): A034904, A034908, A034909, A034910, A034911, A034912, A034975, A034976, A034977, A034996, A035012, A035013, A035017, A035018
factorial numbers, n-factorials (3): A035020, A035021, A035022, A035023, A035024, A035097, A035265, A035272, A035273, A035274, A035275, A035276, A035277, A035278
factorial numbers, n-factorials (4): A035279, A035308, A035323, A045754, A045755, A045756, A045757, A049209, A049210, A049211, A049212, A051188, A051189, A051232
factorial numbers, n-factorials (5): A051262
factorial numbers, q-factorials (1): A015001, A015002, A015004, A015005, A015006, A015007, A015008, A015009, A015011, A015013, A015015, A015017
factorial numbers, q-factorials (2): A015018, A015019, A015020, A015022, A015023, A015025, A015026, A015027, A015028
factorial numbers, sequences related to digits of: A006488, A033147, A033180, A035065, A035067, A045520, A045521, A045522, A045523, A045524, A045525, A045526, A045527, A045528
factorial numbers: see also (01): A000966, A001048, A001272, A001710, A001715, A001720, A001725, A001730, A001804, A002301, A002981, A002982
factorial numbers: see also (02): A003135, A004664, A005008, A005095, A005096, A005212, A005359, A006472, A006993, A007339, A007611
factorial numbers: see also (03): A007749, A010790, A010791, A010792, A010793, A010794, A010795, A010796, A010797, A010798, A010799, A010800
factorial numbers: see also (04): A024168, A033187, A033932, A033933, A034860, A034865, A034866, A034878, A036603, A037082, A037083, A038154, A038156
factorial numbers: see also (05): A038157, A038507, A045647, A048742, A049432, A049433, A049614, A033312
factorial numbers: see also (06): A000178, A000197, A007489, A001044, A000596, A002454, A002455, A002453, A000597, A05130, A051188
factorial numbers: see also (07): A002109, A010786, A014144, A055209, A008904, A008905
factorial numbers: see also central factorial numbers
factorial numbers: see also multifactorial numbers

factorial primes: A002982, A055490
factorial primes: see also A002981, A080778
factorials, double, see factorial numbers, double, n!!
factorials, number of trailing zeros: A027868
factorials: see factorial numbers

factoring , sequences related to :
factoring n, number of ways: A001055*
FactorInteger (Mma): A035306
Factorization (MAGMA): A035306
factorization patterns: A006167, A006168, A006169, A006170, A006171
factorization problems: see sequences whose extension requires factoring large numbers
factorizations of important sequences: exponents in factorization of n: A124010, A064547
factorizations of important sequences: n: A027746; Fibonacci(n): A060441; 2^n-1: A001265; 2^n+1: A001269
factorizations, into given number of factors: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (A034836, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered)
factorizations, ordered: A074206*, A002033

falling factorials: A005490, A005492, A005494

fanout-free functions , sequences related to :
fanout-free functions: A005612, A005615, A005617, A005736, A005737, A005738, A005740, A005741, A005742, A005743
Farey series or tree or fractions , sequences related to :
Farey series or tree: A006842*/A006843*, A007305*/A007306*, A049455*/A049456*, A177405/A177407, A178031, A178047, A177903, A178042
Farey series or tree: see also Stern-Brocot tree
Farey series or tree: see also A005728

fcc lattice: see f.c.c. lattice


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]