login
A060441
Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), with repetition.
4
0, 1, 1, 2, 3, 5, 2, 2, 2, 13, 3, 7, 2, 17, 5, 11, 89, 2, 2, 2, 2, 3, 3, 233, 13, 29, 2, 5, 61, 3, 7, 47, 1597, 2, 2, 2, 17, 19, 37, 113, 3, 5, 11, 41, 2, 13, 421, 89, 199, 28657, 2, 2, 2, 2, 2, 3, 3, 7, 23, 5, 5, 3001, 233, 521, 2, 17, 53, 109, 3, 13, 29, 281, 514229, 2, 2, 2, 5, 11, 31, 61
OFFSET
0,4
COMMENTS
Rows have irregular lengths.
T(n,k) = A027746(A000045(n),k), k = 1 .. A038575(n)). - Reinhard Zumkeller, Aug 30 2014
EXAMPLE
0; 1; 1; 2; 3; 5; 2,2,2; 13; 3,7; 2,17; ...
MAPLE
with(combinat); A060441 := n->ifactor(fibonacci(n));
with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do for k from 1 to ifactors(fibonacci(i))[2][j][2] do printf(`%d, `, ifactors(fibonacci(i))[2][j][1]) od: od: od:
PROG
(Haskell)
a060441 n k = a060441_tabf !! (n-1) !! (k-1)
a060441_row n = a060441_tabf !! (n-1)
a060441_tabf = [0] : [1] : [1] : map a027746_row (drop 3 a000045_list)
-- Reinhard Zumkeller, Aug 30 2014
CROSSREFS
Cf. A038575 (row lengths), A027746, A001222.
Sequence in context: A011157 A205387 A365424 * A255913 A065996 A133906
KEYWORD
nonn,tabf,easy
AUTHOR
N. J. A. Sloane, Apr 07 2001
EXTENSIONS
More terms from James A. Sellers, Apr 09 2001
STATUS
approved