login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006488 Numbers n such that n! has a square number of digits.
(Formerly M0830)
5
0, 1, 2, 3, 7, 12, 18, 32, 59, 81, 105, 132, 228, 265, 284, 304, 367, 389, 435, 483, 508, 697, 726, 944, 1011, 1045, 1080, 1115, 1187, 1454, 1494, 1617, 1659, 1788, 1921, 2012, 2105, 2200, 2248, 2395, 2445, 2861, 2915, 3192, 3480, 3539, 3902, 3964, 4476 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Numbers whose square is represented by the number of digits of n!: 1, 2, 3, 4, 6, 9, 11, 13, 15, 21, 23, 24, 25, 28, 29, ..., . - Robert G. Wilson v, May 14 2014

From Bernard Schott, Jan 04 2020: (Start)

In M. Gardner's book, see reference, there is a tree printout of 105! with 169 digits, where the bottom row consists of the 25 trailing zeros of 105!. M. Gardner does not explain if this is the only factorial that can be displayed in a similar tree form.

Proof: If m! has q^2 digits, hence the number of trailing zeros in m! must be equal to 2*q-1 to satisfy this triangular look; m = 105 satisfies these two conditions with q = 13 because 105! has 13^2 = 169 digits and 2*13-1 = 25 trailing zeros.

When m < 105 and m! has q^2 digits (m <= 81), then q <= 11 and the number of trailing zeros is <= 2*q - 3.

When m > 105 and m! has q^2 digits (m >= 132), then q >= 15 and the number of trailing zeros is >= 2*q + 2.

Hence, only 105! presents such a tree printout.

              1

             081

            39675

           8240290

          900504101

         30580032964

        9720646107774

       902579144176636

      57322653190990515

     3326984536526808240

    339776398934872029657

   99387290781343681609728

  0000000000000000000000000

(End)

REFERENCES

M. Gardner, Mathematical Magic Show. Random House, NY, 1978, p. 55.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..1311

D. S. Kluk and N. J. A. Sloane, Correspondence, 1979

Eric Weisstein's World of Mathematics, Stirling's Approximation and Stirling's Series

Index entries for sequences related to factorial numbers

MATHEMATICA

LogBase10Stirling[n_] := Floor[Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)]]; Select[ Range[ 4500], IntegerQ[ Sqrt[ (LogBase10Stirling[ # ] + 1)]] & ] (* The Mathematica coding comes from J. Stirling's expansion for the Gamma function; see the links. For more terms inside the last Log_10 function, use A001163 & A001164. Robert G. Wilson v, Apr 27 2014 *)

Select[Range[0, 4500], IntegerQ[Sqrt[IntegerLength[#!]]]&] (* Harvey P. Dale, Sep 27 2018 *)

PROG

(PARI) isok(n) = issquare(#Str(n!)); \\ Michel Marcus, Sep 05 2015

(MAGMA) [k:k in [0..5000]| IsSquare(#Intseq(Factorial(k)))]; // Marius A. Burtea, Jan 04 2020

CROSSREFS

Cf. A000142, A027868 (trailing zeros), A034886 (number of digits), A056851.

Sequence in context: A302506 A228828 A061577 * A121430 A217379 A023606

Adjacent sequences:  A006485 A006486 A006487 * A006489 A006490 A006491

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane and Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 06:49 EDT 2020. Contains 337950 sequences. (Running on oeis4.)