

A227154


Product of digits+1 of n in factorial base.


7



1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 4, 8, 8, 16, 12, 24, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 8, 16, 16, 32, 24, 48, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 12, 24, 24, 48, 36, 72, 4, 8, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..5040 (corrected by Ray Chandler, Jan 19 2019)
Tyler Ball, Joanne Beckford, Paul Dalenberg, Tom Edgar, Tina Rajabi, Some Combinatorics of Factorial Base Representations, J. Int. Seq., Vol. 23 (2020), Article 20.3.3.


EXAMPLE

5 has factorial base representation A007623(5) = "21" (as 2*2 + 1*1 = 5). Adding one to these digits and multiplying, we get 3*2 = 6, thus a(5)=6.


PROG

(MIT/GNU Scheme):
(define (A227154 n) (apply * (map 1+ (n>factbase n))))
(define (n>factbase n) (let loop ((n n) (fex (if (zero? n) (list 0) (list))) (i 2)) (cond ((zero? n) fex) (else (loop (floor>exact (/ n i)) (cons (modulo n i) fex) (1+ i))))))
(PARI) a(n)=my(b=2, t=1); while(n, t *= n%b + 1; n \= b; b++); t \\ Charles R Greathouse IV, Jun 06 2017


CROSSREFS

Cf. A007623, A208575, A227153.
Sequence in context: A241450 A189675 A248746 * A324655 A275735 A328835
Adjacent sequences: A227151 A227152 A227153 * A227155 A227156 A227157


KEYWORD

nonn,base


AUTHOR

Antti Karttunen, Jul 04 2013


EXTENSIONS

a(0)=1 added by Tom Edgar, Jun 05 2017


STATUS

approved



