This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293237 Decimal expansion of the escape probability for a random walk on the 3D fcc lattice. 3
 7, 4, 3, 6, 8, 1, 7, 6, 3, 4, 9, 5, 3, 5, 1, 2, 2, 8, 9, 0, 4, 9, 6, 9, 8, 1, 9, 3, 6, 5, 3, 7, 6, 4, 8, 0, 5, 0, 9, 6, 0, 2, 2, 5, 0, 9, 0, 5, 1, 2, 1, 7, 0, 5, 6, 6, 2, 0, 4, 4, 3, 9, 3, 4, 0, 1, 9, 4, 3, 3, 5, 6, 7, 3, 5, 3, 7, 6, 6, 8, 2, 2, 9, 6, 1, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The return probability equals unity minus this constant. The expected number of visits to the origin is the inverse of this constant. The escape probability for the hcp lattice also equals this constant. The escape probability for the diamond lattice is 3/4 times this constant. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Shunya Ishioka and Masahiro Koiwa, Random walks on diamond and hexagonal close packed lattices, Phil. Mag. A, 37 (1978), 517-533. G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B 7 (1973), 650-662. FORMULA Equals 2^(14/3)*Pi^4/(9*Gamma(1/3)^6). EXAMPLE 0.74368176349535122890496981936537648... MATHEMATICA RealDigits[2^(14/3)*Pi^4/(9*Gamma[1/3]^6), 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *) PROG (PARI) 2^(14/3)*Pi^4/(9*gamma(1/3)^6) \\ Altug Alkan, Apr 09 2018 (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); 2^(14/3)*Pi(R)^4/(9*Gamma(1/3)^6); // G. C. Greubel, Oct 26 2018 CROSSREFS Cf. A242761, A293238. Sequence in context: A243309 A244817 A303612 * A316250 A199727 A255168 Adjacent sequences:  A293234 A293235 A293236 * A293238 A293239 A293240 KEYWORD nonn,cons AUTHOR Andrey Zabolotskiy, Oct 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 00:14 EST 2018. Contains 317275 sequences. (Running on oeis4.)