login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159842 Number of symmetrically-distinct supercells (sublattices) of the fcc and bcc lattices (n is the "volume factor" of the supercell). 7
1, 2, 3, 7, 5, 10, 7, 20, 14, 18, 11, 41, 15, 28, 31, 58, 21, 60, 25, 77, 49, 54, 33, 144, 50, 72, 75, 123, 49, 158, 55, 177, 97, 112, 99, 268, 75, 136, 129, 286, 89, 268, 97, 249, 218, 190, 113, 496, 146, 280, 203, 333, 141, 421, 207, 476, 247, 290, 171, 735 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The number of fcc/bcc supercells (sublattices) as a function of n (volume factor) is equivalent to the sequence A001001. But many of these sublattices are symmetrically equivalent. The current sequence lists those that are symmetrically distinct.
Is this the same as A045790? - R. J. Mathar, Apr 28 2009
This sequence also gives number of sublattices of index n for the diamond structure - see Hanany, Orlando & Reffert, sec. 6.3 (they call it the tetrahedral lattice). Indeed: the diamond structure consists of two interpenetrating fcc lattices, and all sites of any sublattice should belong to the same fcc lattice because every sublattice is inversion-symmetric. - Andrey Zabolotskiy, Mar 18 2018
LINKS
J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys., 2010, 10; arXiv:1002.3609 [hep-th], 2010.
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, J. High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th], 2010.
Gus L. W. Hart and Rodney W. Forcade, Algorithm for generating derivative structures, Phys. Rev. B 77, 224115 (2008), DOI: 10.1103/PhysRevB.77.224115.
Materials Simulation Group at Brigham Young University, Derivative structure enumeration library.
Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda and Isao Tanaka, Enumeration of nonequivalent substitutional structures using advanced data structure of binary decision diagram, J. Chem. Phys. 153, 104109 (2020); preprint: Derivative structure enumeration using binary decision diagram, arXiv:2002.12603 [physics.comp-ph], 2020.
Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
PROG
(Python)
def dc(f, *r): # Dirichlet convolution of multiple sequences
if not r:
return f
return lambda n: sum(f(d)*dc(*r)(n//d) for d in range(1, n+1) if n%d == 0)
def fin(*a): # finite sequence
return lambda n: 0 if n > len(a) else a[n-1]
def per(*a): # periodic sequences
return lambda n: a[n%len(a)]
u, N, N2 = lambda n: 1, lambda n: n, lambda n: n**2
def a(n): # Hanany, Orlando & Reffert, sec. 6.3
return (dc(u, N, N2)(n) + 9*dc(fin(1, -1, 0, 4), u, u, N)(n)
+ 8*dc(fin(1, 0, -1, 0, 0, 0, 0, 0, 3), u, u, per(0, 1, -1))(n)
+ 6*dc(fin(1, -1, 0, 2), u, u, per(0, 1, 0, -1))(n))//24
print([a(n) for n in range(1, 300)])
# Andrey Zabolotskiy, Mar 18 2018
CROSSREFS
Cf. A045790.
Cf. A001001.
Sequence in context: A060203 A131880 A045790 * A085102 A087572 A085107
KEYWORD
nonn
AUTHOR
Gus Hart (gus_hart(AT)byu.edu), Apr 23 2009
EXTENSIONS
Terms a(20) and beyond from Andrey Zabolotskiy, Mar 18 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 17:19 EDT 2024. Contains 372310 sequences. (Running on oeis4.)