|
|
A159840
|
|
Numerator of Hermite(n, 15/22).
|
|
1
|
|
|
1, 15, -17, -7515, -100383, 5768775, 207995055, -5256335475, -431188655295, 3708435650175, 994755425985135, 5946917116353525, -2558835187227126495, -55652375114297534025, 7215309872302076942895, 296779894971771199420125, -21739876411879971311406975
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..434
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
Simon Plouffe, Conjectures of the OEIS, as of June 20, 2018.
|
|
FORMULA
|
E.g.f.: exp(-x*(121*x-15)). - Simon Plouffe, Jun 22 2018
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 11^n * Hermite(n, 15/22).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(15/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -15*a(n-1) +242*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 06 2021
|
|
MATHEMATICA
|
Numerator[Table[HermiteH[n, 15/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
Table[11^n*HermiteH[n, 15/22], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 15/22)) \\ Charles R Greathouse IV, Jan 29 2016
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(15/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
|
|
CROSSREFS
|
Cf. A159657.
Sequence in context: A157716 A113968 A093812 * A124609 A102500 A067757
Adjacent sequences: A159837 A159838 A159839 * A159841 A159842 A159843
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|