login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068451 Factorial expansion of the golden ratio (1+sqrt(5))/2 = Sum_{n>=1} a(n)/n!. 4
1, 1, 0, 2, 4, 0, 6, 7, 1, 1, 8, 1, 6, 0, 11, 0, 10, 5, 6, 9, 15, 20, 10, 15, 1, 18, 5, 13, 9, 0, 13, 15, 2, 27, 28, 2, 32, 36, 11, 4, 34, 37, 0, 4, 32, 10, 4, 4, 32, 46, 39, 37, 2, 20, 27, 8, 54, 27, 45, 9, 26, 18, 59, 0, 22, 63, 41, 54, 65, 61, 45, 51, 61, 31, 68, 48, 34, 39, 71, 59 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Index to sequences related to factorial base representation of noninteger constants.

MATHEMATICA

With[{b = GoldenRatio}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Mar 21 2018 *)

PROG

(PARI) default(realprecision, 250); b = (1+sqrt(5))/2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 21 2018

(PARI) A068451(N=90, c=precision(sqrt(5)+1, logint(N!, 10))/2)=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ M. F. Hasler, Nov 27 2018

(MAGMA) SetDefaultRealField(RealField(250));  [Floor((1+Sqrt(5))/2)] cat [Floor(Factorial(n)*(1+Sqrt(5))/2) - n*Floor(Factorial((n-1))*(1+Sqrt(5))/2) : n in [2..80]]; // G. C. Greubel, Mar 21 2018

(Sage)

def A068451(n):

    if (n==1): return floor(golden_ratio)

    else: return expand(floor(factorial(n)*golden_ratio) - n*floor(factorial(n-1)*golden_ratio))

[A068451(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

CROSSREFS

Cf. A001622 (decimal expansion).

Cf. A075874 and A007514.

Sequence in context: A202541 A070676 A291306 * A131715 A200165 A326938

Adjacent sequences:  A068448 A068449 A068450 * A068452 A068453 A068454

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Mar 10 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 00:36 EDT 2020. Contains 335762 sequences. (Running on oeis4.)