login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180590 Numbers k such that k! is the sum of two triangular numbers. 2
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15, 16, 17, 21, 24, 27, 28, 29, 32, 33, 34, 42, 49, 54, 59, 66, 68, 72, 79, 80, 81, 85, 86, 95, 96, 99, 102 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Numbers k such that there are nonnegative numbers x and y such that x*(x+1)/2 + y*(y+1)/2 = k!. Equivalently, (2x+1)^2 + (2y+1)^2 = 8k! + 2. A necessary and sufficient condition for this is that all the prime factors of 4k!+1 that are congruent to 3 (mod 4) occur to even powers (cf. A001481).

Based on an email from R. K. Guy to the Sequence Fans Mailing List, Sep 10 2010.

See A152089 for further links.

LINKS

Table of n, a(n) for n=1..38.

Factor Database, Factors of the numbers 4z!+1

EXAMPLE

0! = 1! = T(0) + T(1);

2! = T(1) + T(1);

3! = T(0) + T(3) = T(2) + T(2);

4! = T(2) + T(6);

5! = T(0) + T(15) = T(5) + T(14);

7! = T(45) + T(89);

8! = T(89) + T(269);

9! = T(210) + T(825);

10! = T(665) + T(2610) = T(1770) + T(2030);

13! = T(71504) + T(85680);

15! = T(213384) + T(1603064) = T(299894) + T(1589154);

16! = T(3631929) + T(5353005);

17! = T(12851994) + T(23370945) = T(17925060) + T(19750115);

etc.

MATHEMATICA

triQ[n_] := IntegerQ@ Sqrt[8 n + 1]; fQ[n_] := Block[{k = 1, lmt = Floor@Sqrt[2*n! ], nf = n!}, While[k < lmt && ! triQ[nf - k (k + 1)/2], k++ ]; r = (Sqrt[8*(nf - k (k + 1)/2) + 1] - 1)/2; Print[{k, r, n}]; If[IntegerQ@r, True, False]]; k = 1; lst = {}; While[k < 69, If[ fQ@ k, AppendTo[lst, k]]; k++ ]; lst

PROG

(Python)

from math import factorial

from itertools import count, islice

from sympy import factorint

def A180590_gen(): # generator of terms

    return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(4*factorial(n)+1).items()), count(0))

A180590_list = list(islice(A180590_gen(), 15)) # Chai Wah Wu, Jun 27 2022

CROSSREFS

A171099 gives the number of solutions. Cf. A000142, A000217, A001481, A076680. Complement of A152089.

Sequence in context: A175020 A050728 A230999 * A289342 A286302 A299767

Adjacent sequences:  A180587 A180588 A180589 * A180591 A180592 A180593

KEYWORD

nonn,more

AUTHOR

Robert G. Wilson v, Sep 10 2010

EXTENSIONS

Edited by N. J. A. Sloane, Sep 24 2010

69 eliminated (see A152089) by N. J. A. Sloane, Sep 24 2010

Extended by Georgi Guninski and D. S. McNeil, Sep 24 2010

a(35)-a(38) from Georgi Guninski, Oct 12 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 11:46 EDT 2022. Contains 357205 sequences. (Running on oeis4.)