OFFSET
1,1
COMMENTS
a(n) is even for n>1. a(n) = 2*A091415(n-1) for n>1, where A091415(n) = {2, 3, 4, 8, 13, 32, 41, 45, 59, 97, 107, 364, 421, 444, 1164, 1738, 3202, 4335, 4841, ...} (numbers k such that k!*2^k - 1 is prime). Corresponding primes of the form k!!-1 are listed in A117141 = {2, 7, 47, 383, 10321919, 51011754393599, ...}. - Alexander Adamchuk, Nov 19 2006
The PFGW program has been used to certify all the terms up to a(25), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Apr 22 2016
REFERENCES
The Top Ten (a Catalogue of Primal Configurations) from the unpublished collections of R. Ondrejka, assisted by C. Caldwell and H. Dubner, March 11, 2000, Page 61.
LINKS
Ken Davis, Status of Search for Multifactorial Primes.
Ken Davis, Results for n!2-1.
R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations
Eric Weisstein's World of Mathematics, Double Factorial Prime
Eric Weisstein's World of Mathematics, Integer Sequence Primes
FORMULA
a(n) = 2*A091415(n-1) for n>1. - Alexander Adamchuk, Nov 19 2006
MAPLE
select(t -> isprime(doublefactorial(t)-1), [3, seq(n, n=4..3000, 2)]); # Robert Israel, Apr 21 2016
MATHEMATICA
a(1) = 3, for n>1 k=2; f=2; Do[k=k+2; f=f*k; If[PrimeQ[f-1], Print[k]], {n, 2, 5000}] (* Alexander Adamchuk, Nov 19 2006 *)
Select[Range[45000], PrimeQ[#!!-1]&] (* Harvey P. Dale, Aug 07 2013 *)
PROG
(PARI) print1(3); for(n=2, 1e3, if(ispseudoprime(n!<<n-1), print1(", ", 2*n))) \\ Charles R Greathouse IV, Jun 16 2011
CROSSREFS
KEYWORD
nonn,hard,nice
AUTHOR
EXTENSIONS
Entry updated by Robert G. Wilson v, Aug 18 2000
Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(23)-a(24) from Sou Fukui, Jun 05 2015
a(25) from Sou Fukui, Apr 21 2016
STATUS
approved