This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276076 Prime-factorization representations of "factorial base digit polynomials": a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)). 20
 1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples. LINKS Antti Karttunen, Table of n, a(n) for n = 0..5040 Indranil Ghosh, Python program for computing this sequence FORMULA a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)). Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n). Other identities. For all n >= 0: A276075(a(n)) = n. A001221(a(n)) = A060130(n). A001222(a(n)) = A034968(n). A051903(a(n)) = A246359(n). A048675(a(n)) = A276073(n). A248663(a(n)) = A276074(n). a(A007489(n)) = A002110(n). a(A059590(n)) = A019565(n). For all n >= 1: a(A000142(n)) = A000040(n). a(A033312(n)) = A076954(n-1). EXAMPLE n  A007623   polynomial     encoded as             a(n)    -------------------------------------------------------    0       0    0-polynomial   (empty product)        = 1    1       1    1*x^0          prime(1)^1             = 2    2      10    1*x^1          prime(2)^1             = 3    3      11    1*x^1 + 1*x^0  prime(2) * prime(1)    = 6    4      20    2*x^1          prime(2)^2             = 9    5      21    2*x^1 + 1*x^0  prime(2)^2 * prime(1)  = 18    6     100    1*x^2          prime(3)^1             = 5    7     101    1*x^2 + 1*x^0  prime(3) * prime(1)    = 10 and:   23     321  3*x^2 + 2*x + 1  prime(3)^3 * prime(2)^2 * prime(1)                                       = 5^3 * 3^2 * 2 = 2250. PROG (Scheme, two versions) (define (A276076 n) (if (zero? n) 1 (* (expt (A000040 (A084558 n)) (A099563 n)) (A276076 (A257687 n))))) (define (A276076 n) (if (zero? n) 1 (* (A275733 n) (A276076 (A276009 n))))) CROSSREFS Cf. A000040, A007623, A084558, A099563, A257687, A276009. Cf. A276075 (a left inverse). Cf. A276078 (same terms in ascending order). Cf. also A000142, A001221, A001222, A002110, A007489, A019565, A033312, A034968, A048675, A051903, A059590, A060130, A076954, A246359, A248663, A276073, A276074. Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials. Sequence in context: A018251 A218339 A329248 * A276086 A018402 A018441 Adjacent sequences:  A276073 A276074 A276075 * A276077 A276078 A276079 KEYWORD nonn,base AUTHOR Antti Karttunen, Aug 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 23:39 EST 2019. Contains 329784 sequences. (Running on oeis4.)