The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011776 a(1) = 1; for n > 1, a(n) is defined by the property that n^a(n) divides n! but n^(a(n)+1) does not. 15
 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 7, 3, 2, 4, 4, 1, 7, 1, 6, 3, 2, 5, 8, 1, 2, 3, 9, 1, 6, 1, 4, 10, 2, 1, 11, 4, 6, 3, 4, 1, 8, 5, 9, 3, 2, 1, 14, 1, 2, 10, 10, 5, 6, 1, 4, 3, 11, 1, 17, 1, 2, 9, 4, 7, 6, 1, 19, 10, 2, 1, 13, 5, 2, 3, 8, 1, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS From Stefano Spezia, Nov 08 2018: (Start) It appears that a(n) = 1 when n = 4 or a prime number (see A175787). It appears that a(n) = 2 for n in A074845. (End) REFERENCES Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991. J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 251. LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe) P. Shui, A footnote on the number of times n goes into n!, The Mathematical Gazette 93:528 (2009), pp. 492-495. Eric Weisstein's World of Mathematics, Factorial EXAMPLE 12^5 divides 12! but 12^6 does not so a(12)=5. MAPLE a := []; for n from 2 to 200 do i := 0: while n! mod n^i = 0 do i := i+1: od: a := [op(a), i-1]; od: a; # second Maple program: f:= proc(n, p) local c, k; c, k:= 0, p;        while n>=k do c:= c+iquo(n, k); k:= k*p od; c     end: a:= n-> min(seq(iquo(f(n, i[1]), i[2]), i=ifactors(n)[2])): a(1):=1: seq(a(n), n=1..100);  # Alois P. Heinz, Oct 04 2012 MATHEMATICA Do[m = 1; While[ IntegerQ[ n!/n^m], m++ ]; Print[m - 1], {n, 1, 100} ] HighestPower[n_, p_] := Module[{r, s=0, k=1}, While[r=Floor[n/p^k]; r>0, s=s+r; k++ ]; s]; SetAttributes[HighestPower, Listable]; Join[{1}, Table[{p, e}=Transpose[FactorInteger[n]]; Min[Floor[HighestPower[n, p]/e]], {n, 2, 100}]] (* T. D. Noe, Oct 01 2008 *) Join[{1}, Table[IntegerExponent[n!, n], {n, 2, 500}]] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *) f[n_, p_] := Module[{c=0, k=p}, While[n >= k , c = c + Quotient[n, k]; k = k*p ]; c]; a[1]=1; a[n_] := Min[ Table[ Quotient[f[n, i[[1]]], i[[2]]], {i, FactorInteger[n] }]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 03 2013, after Alois P. Heinz's Maple program *) PROG (Haskell) a011776 1 = 1 a011776 n = length \$    takeWhile ((== 0) . (mod (a000142 n))) \$ iterate (* n) n -- Reinhard Zumkeller, Sep 01 2012 (PARI) a(n)=valuation(n!, n) \\ Charles R Greathouse IV, Apr 10 2014 (PARI) vp(n, p)=my(s); while(n\=p, s+=n); s a(n)=if(n==1, return(1)); my(f=factor(n)); vecmin(vector(#f~, i, vp(n, f[i, 1])\f[i, 2])) \\ Charles R Greathouse IV, Apr 10 2014 CROSSREFS Cf. A011777, A011778, A133481, A000142, A074845. Diagonal of A090622. Cf. A175787 (primes together with 4). Sequence in context: A324386 A233390 A324114 * A297791 A098965 A290087 Adjacent sequences:  A011773 A011774 A011775 * A011777 A011778 A011779 KEYWORD nonn,easy,look,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 01:57 EDT 2020. Contains 336201 sequences. (Running on oeis4.)