login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153880
Shift factorial base representation left by one digit.
49
0, 2, 6, 8, 12, 14, 24, 26, 30, 32, 36, 38, 48, 50, 54, 56, 60, 62, 72, 74, 78, 80, 84, 86, 120, 122, 126, 128, 132, 134, 144, 146, 150, 152, 156, 158, 168, 170, 174, 176, 180, 182, 192, 194, 198, 200, 204, 206, 240, 242, 246, 248, 252, 254, 264, 266, 270, 272
OFFSET
0,2
COMMENTS
Equally, append 0 to the end of the factorial base representation of n (= A007623(n)), then convert back to decimal.
Involution A225901 maps each term of this sequence to a unique term of A255411, and vice versa.
FORMULA
Other identities. For all n >= 0:
A266193(a(n)) = n.
EXAMPLE
Factorial base representation of 5 is A007623(5) = "21". Shifting this once left (that is, appending 0 to the end) yields "210", which is factorial base representation for 14. Thus a(5) = 14.
MATHEMATICA
Table[Function[b, FromDigits[IntegerDigits[n, b]~Join~{0}, b]]@ MixedRadix[Reverse@ Range@ 12], {n, 0, 57}] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
PROG
(Scheme)
(define (A153880 n) (let loop ((n n) (z 0) (i 2) (f 2)) (cond ((zero? n) z) (else (loop (floor->exact (/ n i)) (+ (* f (modulo n i)) z) (+ 1 i) (* f (+ i 1)))))))
(Python)
from sympy import factorial as f
def a007623(n, p=2): return n if n<p else a007623((n//p), p+1)*10 + n%p
def a(n):
x = (str(a007623(n)) + '0')[::-1]
return 0 if n==0 else sum(int(x[i])*f(i + 1) for i in range(len(x)))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017
CROSSREFS
Indices of zeros in A260736.
Cf. A153883 (terms divided by 2).
Cf. A266193 (a left inverse).
Cf. A273670 (complement).
Cf. also A007623, A225901, A255411.
Sequence in context: A108187 A102166 A024894 * A120227 A276154 A328770
KEYWORD
base,nonn
AUTHOR
Antti Karttunen, Jan 03 2009
STATUS
approved