login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014144 Apply partial sum operator twice to factorials. 6
0, 1, 3, 7, 17, 51, 205, 1079, 6993, 53227, 462341, 4500255, 48454969, 571411283, 7321388397, 101249656711, 1502852293025, 23827244817339, 401839065437653, 7182224591785967, 135607710526966281 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equals row sums of triangle A137948 starting with offset 1. - Gary W. Adamson, Feb 28 2008

If s(n) is a sequence defined as s(0)=a, s(1)=b, s(n) = n*(s(n-1) - s(n-2)), n>1, then s(n) = n*b - (a(n)-1)*a. - Gary Detlefs, Feb 23 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..250

Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7

Index entries for sequences related to factorial numbers

FORMULA

a(n) = (n-1) * !n - n! + 1, !n = Sum_{k=0..n-1} k!. - Joe Keane (jgk(AT)jgk.org)

a(n) = convolution(A000142, A001477). - Peter Luschny, Jan 21 2012

G.f.: x*G(0)/(1-x)^2, where G(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013

MATHEMATICA

Join[{0}, Accumulate@ Accumulate@ (Range[0, 19]!)] (* Robert G. Wilson v *)

PROG

(PARI) a(n)=(n-1)*round(n!/exp(1))-n!+1 \\ Charles R Greathouse IV, Feb 24 2011

(MAGMA) [(k-1)*(&+[Factorial(j): j in [0..k-1]]) - Factorial(k) + 1: k in [1..25]]; // G. C. Greubel, Sep 03 2018

CROSSREFS

Cf. A000142, A003422, A137948.

Sequence in context: A071985 A181419 A090977 * A247183 A096358 A260349

Adjacent sequences:  A014141 A014142 A014143 * A014145 A014146 A014147

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 00:22 EDT 2018. Contains 315270 sequences. (Running on oeis4.)