The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014144 Apply partial sum operator twice to factorials. 6
 0, 1, 3, 7, 17, 51, 205, 1079, 6993, 53227, 462341, 4500255, 48454969, 571411283, 7321388397, 101249656711, 1502852293025, 23827244817339, 401839065437653, 7182224591785967, 135607710526966281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equals row sums of triangle A137948 starting with offset 1. - Gary W. Adamson, Feb 28 2008 If s(n) is a sequence defined as s(0)=a, s(1)=b, s(n) = n*(s(n-1) - s(n-2)), n>1, then s(n) = n*b - (a(n)-1)*a. - Gary Detlefs, Feb 23 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7 FORMULA a(n) = (n-1) * !n - n! + 1, !n = Sum_{k=0..n-1} k!. - Joe Keane (jgk(AT)jgk.org) a(n) = convolution(A000142, A001477). - Peter Luschny, Jan 21 2012 G.f.: x*G(0)/(1-x)^2, where G(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013 MATHEMATICA Join[{0}, Accumulate@ Accumulate@ (Range[0, 19]!)] (* Robert G. Wilson v *) PROG (PARI) a(n)=(n-1)*round(n!/exp(1))-n!+1 \\ Charles R Greathouse IV, Feb 24 2011 (MAGMA) [(k-1)*(&+[Factorial(j): j in [0..k-1]]) - Factorial(k) + 1: k in [1..25]]; // G. C. Greubel, Sep 03 2018 CROSSREFS Cf. A000142, A003422, A137948. Sequence in context: A181419 A090977 A324789 * A247183 A321139 A096358 Adjacent sequences:  A014141 A014142 A014143 * A014145 A014146 A014147 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 16:17 EDT 2020. Contains 337314 sequences. (Running on oeis4.)