login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1). 32
1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..338

Index entries for sequences related to factorial numbers

FORMULA

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.

E.g.f.: (1-7*x)^(-1/7).

G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012

a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012

G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013

a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016

a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018

MAPLE

f := n->product( (7*k+1), k=0..(n-1));

G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..14); # Zerinvary Lajos, Apr 03 2009

MATHEMATICA

FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)

PROG

(PARI) a(n)=prod(k=0, n-1, 7*k+1)

(MAGMA) [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019

(Sage) [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019

(GAP) List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019

CROSSREFS

Cf. k-fold factorials: A000142, A001147 (and A000165, A006882), A007559 (and A032031, A008544, A007661), A007696 (and A001813, A008545, A047053, A007662), A008548 (and A052562, A047055, A085157), A008542 (and A085158), A045755.

See also A113134.

Unsigned row sums of triangle A051186 (scaled Stirling1).

First column of triangle A132056 (S2(8)).

Cf. A114799, A084947, A144739, A144827, A147585, A049209, A051188.

Sequence in context: A211825 A113383 A218671 * A229045 A173774 A034669

Adjacent sequences:  A045751 A045752 A045753 * A045755 A045756 A045757

KEYWORD

nonn

AUTHOR

Wolfdieter Lang

EXTENSIONS

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005

Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008

Corrected by Zerinvary Lajos, Apr 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 22:32 EST 2019. Contains 329134 sequences. (Running on oeis4.)