The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n. 181
 1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles. Mirror image of the triangle A054654. - Philippe Deléham, Dec 30 2006 Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. -  Mokhtar Mohamed, Dec 04 2012 From Wolfdieter Lang, Nov 14 2018: (Start) This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below. This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275. The a-sequence of this Sheffer triangle (see a W. Lang link in A006232) is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes. The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. - Wolfdieter Lang, Nov 14 2018 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833. L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310. J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93. F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245. J. Riordan, An Introduction to Combinatorial Analysis, p. 48. LINKS T. D. Noe, Rows n=0..100 of triangle, flattened M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3. R. M. Dickau, Stirling numbers of the first kind. [Illustrates the unsigned Stirling cycle numbers A132393.] Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10. Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011), #11.4.8. A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011), #11.8.2 (A-number typo A048894). NIST Digital Library of Mathematical Functions, Stirling Numbers Ken Ono, Larry Rolen, and Florian Sprung, Zeta-Polynomials for modular form periods, p. 6, arXiv:1602.00752 [math.NT], 2016. Ricardo A. Podestá, New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers, arXiv preprint arXiv:1603.09156 [math.CO], 2016. FORMULA s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}. s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1. The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1. Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938. Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005 A008275*A007318 as infinite lower triangular matrices. - Gerald McGarvey, Aug 20 2009 T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020 From Wolfdieter Lang, Nov 14 2018: (Start) Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1. Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End) EXAMPLE Triangle begins: n\k 0     1       2       3      4      5      6    7    8   9 ... 0   1 1   0     1 2   0    -1       1 3   0     2      -3       1 4   0    -6      11      -6      1 5   0    24     -50      35    -10      1 6   0  -120     274    -225     85    -15      1 7   0   720   -1764    1624   -735    175    -21    1 8   0 -5040   13068  -13132   6769  -1960    322  -28    1 9   0 40320 -109584  118124 -67284  22449  -4536  546  -36   1 ... - Wolfdieter Lang, Aug 22 2012 ------------------------------------------------------------------ From Wolfdieter Lang, Nov 14 2018: (Start) Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50. Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225. Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}: s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End) MAPLE A048994:= proc(n, k) combinat[stirling1](n, k) end: # R. J. Mathar, Feb 23 2009 seq(print(seq(coeff(expand(k!*binomial(x, k)), x, i), i=0..k)), k=0..9); # Peter Luschny, Jul 13 2009 A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1, n)), x, k), k=0..n) end: # Peter Luschny, Dec 30 2010 MATHEMATICA Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *) PROG (PARI) a(n, k) = if(k<0 || k>n, 0, if(n==0, 1, (n-1)*a(n-1, k)+a(n-1, k-1))) (Maxima) create_list(stirling1(n, k), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */ (Haskell) a048994 n k = a048994_tabl !! n !! k a048994_row n = a048994_tabl !! n a048994_tabl = map fst \$ iterate (\(row, i) -> (zipWith (-) ([0] ++ row) \$ map (* i) (row ++ [0]), i + 1)) ([1], 0) -- Reinhard Zumkeller, Mar 18 2013 (PARI) trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n, k, 1), ", "); ); print(); ); \\ Michel Marcus, Jan 19 2015 CROSSREFS See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version. Cf. A008277, A039814-A039817, A048993, A084938. A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0. Row sums give A019590(n+1). Cf. A002209, A027641/A027642. Sequence in context: A005210 A264430 A264433 * A132393 A121434 A296455 Adjacent sequences:  A048991 A048992 A048993 * A048995 A048996 A048997 KEYWORD sign,tabl,nice AUTHOR EXTENSIONS Offset corrected by R. J. Mathar, Feb 23 2009 Formula corrected by Philippe Deléham, Sep 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 18:25 EDT 2020. Contains 338012 sequences. (Running on oeis4.)