OFFSET
0,3
COMMENTS
Many of the terms yield multifactorial primes a(n) + 1, e.g.: a(2) + 1 = 3, a(4) + 1 = 5, a(6) + 1 = 7, a(9) + 1 = 19, a(10) + 1 = 31, a(12) + 1 = 61, a(13) + 1 = 79, a(24) + 1 = 12241, a(25) + 1 = 19801, a(26) + 1 = 29641, a(29) + 1 = 76561, a(31) + 1 = 379441, a(35) + 1 = 2016841, a(36) + 1 = 2756161, ...
Equivalently, product of all positive integers <= n congruent to n (mod 7). - M. F. Hasler, Feb 23 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Multifactorial.
FORMULA
a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020
EXAMPLE
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
MAPLE
A114799 := proc(n)
option remember;
if n < 1 then
1;
else
n*procname(n-7) ;
end if;
end proc:
seq(A114799(n), n=0..40) ; # R. J. Mathar, Jun 23 2014
A114799 := n -> product(n-7*k, k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
MATHEMATICA
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Aug 20 2019 *)
PROG
(PARI) A114799(n, k=7)=prod(j=0, (n-1)\k, n-j*k) \\ M. F. Hasler, Feb 23 2018
(Magma)
b:= func< n | (n lt 8) select n else n*Self(n-7) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
(Sage)
def a(n):
if (n<1): return 1
else: return n*a(n-7)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
(GAP)
a:= function(n)
if n<1 then return 1;
else return n*a(n-7);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 18 2006
EXTENSIONS
Edited by M. F. Hasler, Feb 23 2018
STATUS
approved