OFFSET
0,1
COMMENTS
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..9999
G. Nebe and N. J. A. Sloane, Home page for this lattice
N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Aug 17 2009
A005875(2*n + 1) = a(n). - Michael Somos, Aug 17 2009
EXAMPLE
6 + 8*x + 24*x^2 + 30*x^4 + 24*x^5 + 24*x^6 + 48*x^8 + 24*x^9 + 48*x^
10 + ...
6*q + 8*q^3 + 24*q^5 + 30*q^9 + 24*q^11 + 24*q^13 + 48*q^17 + 24*q^19 + ...
MAPLE
maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a, q, maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a, q, maxd): th4:=series(subs(q=-q, th3), q, maxd):
t1:=series((th3^3-th4^3)/(2*q), q, maxd): t1:=series(subs(q=sqrt(q), t1), q, floor(maxd/2)): t2:=seriestolist(t1): for n from 1 to nops(t2) do lprint(n-1, t2[n]); od:
MATHEMATICA
s = (EllipticTheta[3, 0, q]^3 - EllipticTheta[3, 0, -q]^3)/(2q) + O[q]^200; CoefficientList[s, q^2] (* Jean-François Alcover, Sep 19 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n))} /* Michael Somos, Aug 17 2009 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved