login
A005887
Theta series of f.c.c. lattice with respect to octahedral hole.
(Formerly M4070)
6
6, 8, 24, 0, 30, 24, 24, 0, 48, 24, 48, 0, 30, 32, 72, 0, 48, 48, 24, 0, 96, 24, 72, 0, 54, 48, 72, 0, 48, 72, 72, 0, 96, 24, 96, 0, 48, 56, 96, 0, 102, 72, 48, 0, 144, 48, 48, 0, 48, 72, 168, 0, 96, 72, 72, 0, 96, 48, 120, 0, 78, 48, 144, 0, 144, 120, 48, 0, 96, 72, 96, 0, 96, 56, 168
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Aug 17 2009
A005875(2*n + 1) = a(n). - Michael Somos, Aug 17 2009
EXAMPLE
6 + 8*x + 24*x^2 + 30*x^4 + 24*x^5 + 24*x^6 + 48*x^8 + 24*x^9 + 48*x^
10 + ...
6*q + 8*q^3 + 24*q^5 + 30*q^9 + 24*q^11 + 24*q^13 + 48*q^17 + 24*q^19 + ...
MAPLE
maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a, q, maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a, q, maxd): th4:=series(subs(q=-q, th3), q, maxd):
t1:=series((th3^3-th4^3)/(2*q), q, maxd): t1:=series(subs(q=sqrt(q), t1), q, floor(maxd/2)): t2:=seriestolist(t1): for n from 1 to nops(t2) do lprint(n-1, t2[n]); od:
MATHEMATICA
s = (EllipticTheta[3, 0, q]^3 - EllipticTheta[3, 0, -q]^3)/(2q) + O[q]^200; CoefficientList[s, q^2] (* Jean-François Alcover, Sep 19 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n))} /* Michael Somos, Aug 17 2009 */
CROSSREFS
Cf. A005875.
Sequence in context: A034761 A085796 A280641 * A349172 A119875 A053189
KEYWORD
nonn
STATUS
approved