login
A280641
Numbers k such that k^3 has an odd number of digits and the middle digit is 1.
3
1, 6, 8, 23, 44, 45, 102, 106, 110, 114, 117, 121, 137, 148, 152, 153, 162, 168, 176, 185, 189, 194, 206, 210, 478, 488, 512, 533, 553, 560, 574, 580, 626, 639, 655, 662, 669, 671, 676, 682, 683, 684, 685, 693, 704, 710, 730, 731, 737, 742, 758, 761, 767, 771
OFFSET
1,2
COMMENTS
The sequence of cubes starts: 1, 216, 512, 12167, 85184, 91125, 1061208, 1191016, ...
LINKS
Jeremy Gardiner, Middle digit in cube numbers, Seqfan Mailing list, Dec 12 2016.
EXAMPLE
1^3 = (1), 114^3 = 148(1)544, 560^3 = 1756(1)6000
MATHEMATICA
a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]] + 1)/2];
Select[Range[0, 771], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==1 &] (* Indranil Ghosh, Mar 06 2017 *)
PROG
(PARI)
isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 1);
for(k=0, 771, if(isok(k)==1, print1(k, ", "))); \\ Indranil Ghosh, Mar 06 2017
(Python)
i=0
j=1
while i<=771:
n=str(i**3)
l=len(n)
if l%2 and n[(l-1)//2]=="1":
print(str(i), end=', ')
j+=1
i+=1 # Indranil Ghosh, Mar 06 2017
CROSSREFS
See A279420-A279429 for a k^2 version.
See A279430-A279431 for a k^2 version in base 2.
Sequence in context: A276226 A034761 A085796 * A005887 A349172 A119875
KEYWORD
nonn,base,easy
AUTHOR
Lars Blomberg, Jan 07 2017
STATUS
approved