The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096622 Harmonic expansion (or factorial expansion) of the Euler-Mascheroni constant. 3
 0, 1, 0, 1, 4, 1, 4, 1, 3, 0, 2, 3, 0, 5, 14, 12, 16, 14, 7, 13, 18, 17, 19, 11, 22, 13, 13, 26, 12, 16, 2, 26, 1, 2, 28, 18, 3, 27, 31, 27, 9, 7, 37, 28, 13, 26, 2, 34, 29, 47, 49, 34, 39, 10, 0, 42, 1, 9, 42, 1, 32, 61, 23, 57, 42, 32, 2, 12, 32, 32, 48, 42, 49, 15, 14, 39, 48 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Harmonic Expansion FORMULA Sum_{n>=1} a(n)/n! = Euler gamma = A001620. - G. C. Greubel, Nov 26 2018 EXAMPLE Euler gamma = 0 + 1/2! + 0/3! + 1/4! + 4/5! + 1/6! + 4/7! + 1/8! + ... MATHEMATICA With[{b = EulerGamma}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *) PROG (PARI) default(realprecision, 250); b = Euler; for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018 (Magma) SetDefaultRealField(RealField(250)); [Floor(EulerGamma(250))] cat [Floor(Factorial(n)*EulerGamma(250)) - n*Floor(Factorial((n-1))*EulerGamma(250)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018 (Sage) b = euler_gamma; def A096622(n): if (n==1): return floor(b) else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b)) [A096622(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018 CROSSREFS Cf. A001620 (decimal expansion), A002852 (continued fraction). Sequence in context: A140704 A030748 A144865 * A331291 A080905 A010685 Adjacent sequences: A096619 A096620 A096621 * A096623 A096624 A096625 KEYWORD nonn AUTHOR Eric W. Weisstein, Jul 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)