login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001044 a(n) = (n!)^2.
(Formerly M3666 N1492)
83
1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let M_n be the symmetrical n X n matrix M_n(i,j)=1/Max(i,j); then for n>0 det(M_n)=1/a(n). - Benoit Cloitre, Apr 27 2002

The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - Simone Severini, Feb 15 2006

a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - David Callan, Mar 30 2007

From Emeric Deutsch, Nov 22 2007: (Start)

Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.

Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.

Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.

Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.

(End)

G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2=P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - Mohammad K. Azarian, Mar 28 2008

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - Enrique Pérez Herrero, Aug 13 2011

The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277). p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012

Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - Joerg Arndt, May 28 2012

a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round((2f(x))^.5)=round((2f(y))^.5), then x=y. - Dennis P. Walsh, Nov 26 2012

REFERENCES

Archimedeans Problems Drive, Eureka, 22 (1959), 15.

David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.

J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).

S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers.

R. K. Guy, Letters to N. J. A. Sloane, June-August 1968

G. S. Kazandzidis, On a Conjecture of Moessner and a General Problem, Bull. Soc. Math. Grece, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30, 1961.

S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

S. Kitaev and J. Remmel, Classifying descents according to parity, Annals of Combinatorics, 11, 2007, 173-193.

Rob Pratt (Proposer), Problem 11573, Amer. Math. Monthly, 120 (2013), 372.

Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.

Simone Severini, Title? [dead link]

Index to divisibility sequences

Index entries for sequences related to factorial numbers

FORMULA

Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*2*BesselK(0, 2*sqrt(x)), x=0..infinity), n=0, 1... - Karol A. Penson, Oct 09 2001

a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002

a(n) = Polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = n!/2^n*product(2*i+2, i=0..n-1) = n!*pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

a(n) = Sum{k>=0, (-1)^k*C(n, k)^2*k!*(2*n-k)! }. - Philippe Deléham, Jan 07 2004

a(n) = !n!_1 = !n! = Prod_{i=0, 1, 2, ... .}_{0<|n-i|<=n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004

a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011

From Sergei N. Gladkovskii, Jun 14 2012: (Start)

A(x)= sum(n>=0,N)(a(n)*x^n)= 1 + x/(U(0;N-2)-x); N>=4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction, Euler's 1st kind, 1-step).

Let B(x) = sum(n>=0, a(n)*x^n/((n!)*(n+s)!) ), then

B(0)= 1/(1-x) for abs(x)< 1  and  B(1)= - 1/x * log(1-x) for abs(x)< 1.

(End).

G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013

a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013

a(n) = (2*n+1)!*2^(-4*n)*sum(k=0..n, (-1)^k*C(2*n+1,n-k)/(2*k+1)). - Mircea Merca, Nov 12 2013

a(n) = A000290(A000142(n)). - Michel Marcus, Nov 12 2013

Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016

From Ivan N. Ianakiev, Aug 16 2016: (Start)

a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n>1.

a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n>1.

(End).

From Ilya Gutkovskiy, Aug 16 2016: (Start)

a(n) = A184877(n)*A184877(n-1).

Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)

Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017

EXAMPLE

Consider the square array

1 2 3 4 5 6...

2 4 6 8 10 12...

3 6 9 12 15 18 ...

4 8 12 16 20 24...

5 10 15 20 25 30...

...

then a(n) = product of n-th antidiagonal. - Amarnath Murthy, Apr 06 2003

a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round((2f(x))^.5)=round((2f(y))^.5), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - Dennis P. Walsh, Nov 26 2012

1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...

MAPLE

seq((n!)^2, n=0..20); # Dennis P. Walsh, Nov 26 2012

MATHEMATICA

Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *)

PROG

(PARI) a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011

(Haskell)

import Data.List (genericIndex)

a001044 n = genericIndex a001044_list n

a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list

-- Reinhard Zumkeller, Sep 05 2015

CROSSREFS

Cf. A000142, A000292, A084939, A084940, A084941, A084942, A084943, A084944, A020549, A046032, A048617.

First right-hand column of triangle A008955.

Cf. A134434, A134435, A000442, A134375.

Row n=2 of A225816.

Cf. A000290.

Sequence in context: A238844 A073852 A139033 * A086879 A263445 A241029

Adjacent sequences:  A001041 A001042 A001043 * A001045 A001046 A001047

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

More terms from James A. Sellers, Sep 19 2000

More terms from Simone Severini, Feb 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 05:07 EDT 2017. Contains 288813 sequences.