login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003422 Left factorials: !n = Sum_{k=0..n-1} k!.
(Formerly M1237)
119
0, 1, 2, 4, 10, 34, 154, 874, 5914, 46234, 409114, 4037914, 43954714, 522956314, 6749977114, 93928268314, 1401602636314, 22324392524314, 378011820620314, 6780385526348314, 128425485935180314, 2561327494111820314, 53652269665821260314, 1177652997443428940314 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of {12, 12*, 1*2, 21*}- and {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the number of permutations on [n] that avoid the patterns 2n1 and n12. An occurrence of a 2n1 pattern is a (scattered) subsequence a-n-b with a > b. - David Callan, Nov 29 2007
Also, numbers left over after the following sieving process: At step 1, keep all numbers of the set N = {0, 1, 2, ...}. In step 2, keep only every second number after a(2) = 2: N' = {0, 1, 2, 4, 6, 8, 10, ...}. In step 3, keep every third of the numbers following a(3) = 4, N" = {0, 1, 2, 4, 10, 16, 22, ...}. In step 4, keep every fourth of the numbers beyond a(4) = 10: {0, 1, 2, 4, 10, 34, 58, ...}, and so on. - M. F. Hasler, Oct 28 2010
If s(n) is a second-order recurrence defined as s(0) = x, s(1) = y, s(n) = n*(s(n - 1) - s(n - 2)), n > 1, then s(n) = n*y - n*a(n - 1)*x. - Gary Detlefs, May 27 2012
a(n) is the number of lists of {1, ..., n} with (1st element) = (smallest element) and (k-th element) <> (k-th smallest element) for k > 1, where a list means an ordered subset. a(4) = 10 because we have the lists: [1], [2], [3], [4], [1, 3, 2], [1, 4, 2], [1, 4, 3], [2, 4, 3], [1, 3, 4, 2], [1, 4, 2, 3]. Cf. A000262. - Geoffrey Critzer, Oct 04 2012
Consider a tree graph with 1 vertex. Add an edge to it with another vertex. Now add 2 edges with vertices to this vertex, and then 3 edges to each open vertex of the tree (not the first one!), and the next stage is to add 4 edges, and so on. The total number of vertices at each stage give this sequence (see example). - Jon Perry, Jan 27 2013
Additive version of the superfactorials A000178. - Jon Perry, Feb 09 2013
Repunits in the factorial number system (see links). - Jon Perry, Feb 17 2013
Whether n|a(n) only for 1 and 2 remains an open problem. A published 2004 proof was retracted in 2011. This is sometimes known as Kurepa's conjecture. - Robert G. Wilson v, Jun 15 2013, corrected by Jeppe Stig Nielsen, Nov 07 2015.
!n is not always squarefree for n > 3. Miodrag Zivkovic found that 54503^2 divides !26541. - Arkadiusz Wesolowski, Nov 20 2013
a(n) gives the position of A007489(n) in A227157. - Antti Karttunen, Nov 29 2013
Matches the total domination number of the Bruhat graph from n = 2 to at least n = 5. - Eric W. Weisstein, Jan 11 2019
For the connection with Kurepa trees, see A. Petojevic, The {K_i(z)}_{i=1..oo} functions, Rocky Mtn. J. Math., 36 (2006), 1637-1650. - Aleksandar Petojevic, Jun 29 2018
REFERENCES
Richard K. Guy, Unsolved Problems Number Theory, Section B44.
D. Kurepa, On the left factorial function !n. Math. Balkanica 1 1971 147-153.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), Article 00.1.5.
Bernd C. Kellner, Some remarks on Kurepa's left factorial, arXiv:math/0410477 [math.NT], 2004.
D. Kurepa, On the left factorial function !N, Math. Balkanica 1 (1971), 147-153. (Annotated scanned copy).
T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
Romeo Meštrović, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037 [math.NT], 2013.
Romeo Meštrović, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
Jon Perry, Sum of Factorials. [Broken link?]
Aleksandar Petojevic, On Kurepa's hypothesis for the left factorial, Filomat, Vol. 12, No. 1, 1998.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
Aleksandar Petojevic, The {K_i(z)}_{i=1..oo} functions, Rocky Mtn. J. Math., 36 (2006), 1637-1650.
Eric Weisstein's World of Mathematics, Factorial Sums.
Eric Weisstein's World of Mathematics, Left Factorial.
Eric Weisstein's World of Mathematics, Repunit.
Miodrag Zivkovic, The number of primes sum_{i=1..n} (-1)^(n-i)*i! is finite, Math. Comp. 68 (1999), pp. 403-409.
FORMULA
D-finite with recurrence: a(n) = n*a(n - 1) - (n - 1)*a(n - 2). - Henry Bottomley, Feb 28 2001
Sequence is given by 1 + 1*(1 + 2*(1 + 3*(1 + 4*(1 + ..., terminating in n*(1)...). - Jon Perry, Jun 01 2004
a(n) = Sum_{k=0..n-1} P(n, k) / C(n, k). - Ross La Haye, Sep 20 2004
E.g.f.: (Ei(1) - Ei(1 - x))*exp(-1 + x) where Ei(x) is the exponential integral. - Djurdje Cvijovic and Aleksandar Petojevic, Apr 11 2000
a(n) = Integral_{x = 0..oo} [(x^n - 1)/(x - 1)]*exp(-x) dx. - Gerald McGarvey, Oct 12 2007
A007489(n) = !(n + 1) - 1 = a(n + 1) - 1. - Artur Jasinski, Nov 08 2007. Typos corrected by Antti Karttunen, Nov 29 2013
Starting (1, 2, 4, 10, 34, 154, ...), = row sums of triangle A135722. - Gary W. Adamson, Nov 25 2007
a(n) = a(n - 1) + (n - 1)! for n >= 2. - Jaroslav Krizek, Jun 16 2009
E.g.f. A(x) satisfies the differential equation A'(x) = A(x) + 1/(1 - x). - Vladimir Kruchinin, Jan 19 2011
a(n + 1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = A182386(k) for k = 0, 1, ..., n. - Michael Somos, Apr 27 2012
From Sergei N. Gladkovskii, May 09 2013 to Oct 22 2013: (Start)
Continued fractions:
G.f.: x/(1-x)*Q(0) where Q(k) = 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/Q(k+1))).
G.f.: G(0)*x/(1-x)/2 where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))).
G.f.: 2*x/(1-x)/G(0) where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: W(0)*x/(1+sqrt(x))/(1-x) where W(k) = 1 + sqrt(x)/(1 - sqrt(x)*(k+1)/(sqrt(x)*(k+1) + 1/W(k+1))).
G.f.: B(x)*(1+x)/(1-x) where B(x) is the g.f. of A153229.
G.f.: x/(1-x) + x^2/(1-x)/Q(0) where Q(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+1)*(2*k+2)/(1 - 2*x*(2*k+2) - x^2*(2*k+2)*(2*k+3)/Q(k+1)).
G.f.: x*(1+x)*B(x) where B(x) is the g.f. of A136580. (End)
a(n) = (-1)^(n+1)*C(n-1, -1) where C(n, x) are the Charlier polynomials (with parameter a=1) as given in A137338. (Evaluation at x = 1 gives A232845.) - Peter Luschny, Nov 28 2018
a(n) = (a(n-3)*(n-2)^2*(n-3)! + a(n-1)^2)/a(n-2) (empirical). - Gary Detlefs, Feb 25 2022
a(n) = signum(n)/b(1,n) with b(i,n) = i - [i<n] * i/b(i+1,n). - Mohammed Bouras, Sep 07 2022
Sum_{n>=1} 1/a(n) = A357145. - Amiram Eldar, Oct 01 2022
EXAMPLE
!5 = 0! + 1! + 2! + 3! + 4! = 1 + 1 + 2 + 6 + 24 = 34.
x + 2*x^2 + 4*x^3 + 10*x^4 + 34*x^5 + 154*x^6 + 874*x^7 + 5914*x^8 + 46234*x^9 + ...
From Arkadiusz Wesolowski, Aug 06 2012: (Start)
Illustration of initial terms:
.
. o o o o o
. o o o o
. o o o o o o
. ooo ooo ooo ooo
. oooo oooo oooo oooo oooo oooo
.
. 1 2 4 10 34
.
(End)
The tree graph. The total number of vertices at each stage is 1, 2, 4, 10, ...
0 0
|/
0-0
/
0-0
\
0-0
|\
0 0
- Jon Perry, Jan 27 2013
MAPLE
A003422 := proc(n) local k; add(k!, k=0..n-1); end proc:
# Alternative, using the Charlier polynomials A137338:
C := proc(n, x) option remember; if n > 0 then (x-n)*C(n-1, x) - n*C(n-2, x)
elif n = 0 then 1 else 0 fi end: A003422 := n -> (-1)^(n+1)*C(n-1, -1):
seq(A003422(n), n=0..22); # Peter Luschny, Nov 28 2018
# third Maple program:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+(n-1)!) end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 24 2022
MATHEMATICA
Table[Sum[i!, {i, 0, n - 1}], {n, 0, 20}] (* Stefan Steinerberger, Mar 31 2006 *)
Join[{0}, Accumulate[Range[0, 25]!]] (* Harvey P. Dale, Nov 19 2011 *)
a[0] = 0; a[1] = 1; a[n_] := a[n] = n*a[n - 1] - (n - 1)*a[n - 2]; Array[a, 23, 0] (* Robert G. Wilson v, Jun 15 2013 *)
a[n_] := (-1)^n*n!*Subfactorial[-n-1]-Subfactorial[-1]; Table[a[n] // FullSimplify, {n, 0, 22}] (* Jean-François Alcover, Jan 09 2014 *)
RecurrenceTable[{a[n] == n a[n - 1] - (n - 1) a[n - 2], a[0] == 0, a[1] == 1}, a, {n, 0, 10}] (* Eric W. Weisstein, Jan 11 2019 *)
Range[0, 20]! CoefficientList[Series[(ExpIntegralEi[1] - ExpIntegralEi[1 - x]) Exp[x - 1], {x, 0, 20}], x] (* Eric W. Weisstein, Jan 11 2019 *)
Table[(-1)^n n! Subfactorial[-n - 1] - Subfactorial[-1], {n, 0, 20}] // FullSimplify (* Eric W. Weisstein, Jan 11 2019 *)
Table[(I Pi + ExpIntegralEi[1] + (-1)^n n! Gamma[-n, -1])/E, {n, 0, 20}] // FullSimplify (* Eric W. Weisstein, Jan 11 2019 *)
PROG
(PARI) a003422(n)=sum(k=0, n-1, k!) \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a003422 n = a003422_list !! n
a003422_list = scanl (+) 0 a000142_list
-- Reinhard Zumkeller, Dec 27 2011
(Maxima) makelist(sum(k!, k, 0, n-1), n, 0, 20); /* Stefano Spezia, Jan 11 2019 */
(Python)
from itertools import count, islice
def A003422_gen(): # generator of terms
yield from (0, 1)
c, f = 1, 1
for n in count(1):
yield (c:= c + (f:= f*n))
A003422_list = list(islice(A003422_gen(), 20)) # Chai Wah Wu, Jun 22 2022
(Python)
def a(n):
if n == 0: return 0
s = f = 1
for k in range(1, n):
f *= k
s += f
return round(s)
print([a(n) for n in range(24)]) # Peter Luschny, Mar 05 2024
CROSSREFS
Equals A007489(n-1)+1 for n>=1. Cf. A000142, A014144, A005165.
Twice A014288. See also A049782, A100612.
Sequence in context: A006397 A297197 A297201 * A117402 A109455 A258948
KEYWORD
nonn,easy,nice,changed
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 03:27 EDT 2024. Contains 370952 sequences. (Running on oeis4.)