login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003422 Left factorials: !n = Sum k!, k=0..n-1.
(Formerly M1237)
75
0, 1, 2, 4, 10, 34, 154, 874, 5914, 46234, 409114, 4037914, 43954714, 522956314, 6749977114, 93928268314, 1401602636314, 22324392524314, 378011820620314, 6780385526348314, 128425485935180314, 2561327494111820314, 53652269665821260314 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of {12, 12*, 1*2, 21*}- and {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.

a(n) = number of permutations on [n] that avoid the patterns 2n1 and n12. An occurrence of a 2n1 pattern is a (scattered) subsequence a-n-b with a > b. - David Callan, Nov 29 2007

Also, numbers left over after the following sieving process: At step 1, keep all numbers of the set N = {0, 1, 2, ...}. In step 2, keep only every second number after a(2) = 2: N' = {0, 1, 2, 4, 6, 8, 10, ...}. In step 3, keep every third of the numbers following a(3) = 4, N" = {0, 1, 2, 4, 10, 16, 22, ...}. In step 4, keep every fourth of the numbers beyond a(4) = 10: {0, 1, 2, 4, 10, 34, 58, ...}, and so on. - M. F. Hasler, Oct 28 2010

If s(n) is a second order recurrence defined as s(0) = x, s(1) = y, s(n) = n*(s(n - 1) - s(n - 2)), n > 1, then s(n) = n*y - n*a(n - 1)*x. - Gary Detlefs, May 27 2012

a(n) is the number of lists of {1, .., n} with (1st element) = (smallest element) and (k-th element) <> (k-th smallest element) for k > 1, where a list means an ordered subset. a(4) = 10 because we have the lists: [1], [2], [3], [4], [1, 3, 2], [1, 4, 2], [1, 4, 3], [2, 4, 3], [1, 3, 4, 2], [1, 4, 2, 3]. Cf. A000262. - Geoffrey Critzer, Oct 04 2012

Consider a tree graph with 1 vertex. Add an edge to it with another vertex. Now add 2 edges with vertices to this vertex, and then 3 edges to each open vertex of the tree (not the first one!), and the next stage is to add 4 edges, and so on. The total number of vertices at each stage give this sequence (see example). - Jon Perry, Jan 27 2013

Additive version of the superfactorials A000178. - Jon Perry, Feb 09 2013

Repunits in the factorial number system (see links). - Jon Perry, Feb 17 2013

n|a(n) only for 1 and 2. - Robert G. Wilson v, Jun 15 2013

!n is not always squarefree for n > 3. Miodrag Zivkovic found that 54503^2 divides !26541. - Arkadiusz Wesolowski, Nov 20 2013

a(n) gives the position of A007489(n) in A227157. - Antti Karttunen, Nov 29 2013

REFERENCES

R. K. Guy, Unsolved Problems Number Theory, Section B44.

D. Kurepa, On the left factorial function !n. Math. Balkanica 1 1971 147-153.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

T. Mansour and J. West, Avoiding 2-letter signed patterns.

Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037, 2013

Hisanori Mishima, Factorizations of many number sequences

Hisanori Mishima, Factorizations of many number sequences

Jon Perry, Sum of Factorials

Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7

Eric Weisstein, Left Factorial (Mathworld).

Eric Weisstein, Factorial sums (Mathworld).

Eric Weisstein, Repunit

Wikipedia, Factorial number system

Miodrag Zivkovic, The number of primes sum_{i=1..n} (-1)^(n-i)*i! is finite, Math. Comp. 68 (1999), pp. 403-409.

Index entries for sequences related to factorial numbers

FORMULA

a(n) = n*a(n - 1) - (n - 1)*a(n - 2). - Henry Bottomley, Feb 28 2001

Sequence is given by 1 + 1[1 + 2[1 + 3[1 + 4[1 + ..., terminating in n[1]..]. - Jon Perry, Jun 01 2004

a(n) = Sum[P(n, k) / C(n, k) {k = 0...n - 1}]. - Ross La Haye, Sep 20 2004

E.g.f.: (Ei(1) - Ei(1 - x))*exp(-1 + x) where Ei(x) is the exponential integral. - Djurdje Cvijovic and Aleksandar Petojevic (apetoje(AT)ptt.yu), Apr 11 2000

a(n) = Integral_{x = 0..infinity} [(x^n - 1)/(x - 1)]*exp(-x) dx. - Gerald McGarvey, Oct 12 2007

A007489(n) = !(n + 1) - 1 = a(n + 1) - 1. - Artur Jasinski, Nov 08 2007. Typos corrected by Antti Karttunen, Nov 29 2013

Starting (1, 2, 4, 10, 34, 154,...), = row sums of triangle A135722. - Gary W. Adamson, Nov 25 2007

a(n) = a(n - 1) + (n - 1)! for n >= 2. - Jaroslav Krizek, Jun 16 2009

E.g.f. A(x) satisfies the differential equation A'(x) = A(x) + 1/(1 - x). - Vladimir Kruchinin, Jan 19 2011

a(n + 1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = A182386(k) for k = 0, 1, ..., n. - Michael Somos, Apr 27 2012

G.f.: x/(1-x)*Q(0), where Q(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013

G.f.: G(0)*x/(1-x)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013

G.f.: 2*x/(1-x)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013

G.f.: W(0)*x/(1+sqrt(x))/(1-x), where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+1)/(sqrt(x)*(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 17 2013

G.f.: B(x)*(1+x)/(1-x), where B(x) is the g.f. of A153229. - Sergei N. Gladkovskii, Aug 17 2013

G.f.: x/(1-x) + x^2/(1-x)/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+1)*(2*k+2)/( 1 - 2*x*(2*k+2) - x^2*(2*k+2)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013

G.f.: x*(1+x)*B(x), where B(x) is the g.f. of A136580. - Sergei N. Gladkovskii, Oct 22 2013

EXAMPLE

!5 = 0! + 1! + 2! + 3! + 4! = 1 + 1 + 2 + 6 + 24 = 34.

x + 2*x^2 + 4*x^3 + 10*x^4 + 34*x^5 + 154*x^6 + 874*x^7 + 5914*x^8 + 46234*x^9 + ...

Contribution from Arkadiusz Wesolowski, Aug 06 2012: (Start)

Illustration of initial terms:

.

. o        o         o            o                         o

.          o         o            o                         o

.                   o o          o o                       o o

.                              ooo ooo                   ooo ooo

.                                             oooo oooo oooo oooo oooo oooo

.

. 1        2         4            10                        34

.

(End)

The tree graph. The total number of vertices at each stage is 1, 2, 4, 10, ...

    0 0

    |/

    0-0

   /

0-0

   \

    0-0

    |\

    0 0

- Jon Perry, Jan 27 2013

MAPLE

A003422 := proc(n) local k; add(k!, k=0..n-1); end;

MATHEMATICA

Table[Sum[i!, {i, 0, n - 1}], {n, 0, 20}] (* Stefan Steinerberger, Mar 31 2006 *)

Join[{0}, Accumulate[Range[0, 25]!]] (* Harvey P. Dale, Nov 19 2011 *)

a[0] = 0; a[1] = 1; a[n_] := a[n] = n*a[n - 1] - (n - 1)*a[n - 2]; Array[a, 23, 0] (* Robert G. Wilson v, Jun 15 2013 *)

a[n_] := (-1)^n*n!*Subfactorial[-n-1]-Subfactorial[-1]; Table[a[n] // FullSimplify, {n, 0, 22}] (* Jean-Fran├žois Alcover, Jan 09 2014 *)

PROG

(PARI) a(n)=sum(k=0, n-1, k!) \\ Charles R Greathouse IV, Jun 15 2011

(Haskell)

a003422 n = a003422_list !! n

a003422_list = scanl (+) 0 a000142_list

-- Reinhard Zumkeller, Dec 27 2011

CROSSREFS

Equals A007489(n-1)+1 for n>=1. Cf. A000142, A014144, A005165.

Twice A014288. See also A049782, A100612.

Cf. A102639, A102411, A102412, A101752, A094216, A094638, A008276, A000166, A000110, A000204, A000045, A000108, A135722, A227157.

Cf. A000178.

Sequence in context: A089476 A220028 A006397 * A117402 A109455 A189591

Adjacent sequences:  A003419 A003420 A003421 * A003423 A003424 A003425

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, R. K. Guy

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 08:14 EST 2014. Contains 250020 sequences.