|
|
A101752
|
|
Table (read by rows) giving the coefficients of sum formulas of n-th Left factorials (A003422). The k-th row (k>=1) contains T(i,k) for i=1 to k+1, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies !n = Sum_{i=1..k+1} T(i,k) * n^(k-i+1) / k!.
|
|
7
|
|
|
1, 0, 1, 5, -16, 8, 69, -767, 1314, 117, 1774, -30405, 78914, 69024
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
LINKS
|
Table of n, a(n) for n=1..14.
|
|
EXAMPLE
|
!7 = 874; substituting n=7 in the formula of the k-th row we obtain k=4 and the coefficients
T(i,4) will be the following: 117,1774,-30405,78914,69024, => !7 = [ 117*7^4 +1774*7^3 -30405*7^2 +78914*7 +69024 ]/4! = 874.
|
|
CROSSREFS
|
Cf. A094638, A094216, A003422, A008276, A101751, A000142, A101559, A101032, A099731.
Sequence in context: A043295 A063927 A195869 * A332474 A195866 A075805
Adjacent sequences: A101749 A101750 A101751 * A101753 A101754 A101755
|
|
KEYWORD
|
sign,tabl
|
|
AUTHOR
|
André F. Labossière, Dec 17 2004
|
|
STATUS
|
approved
|
|
|
|