login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000597 Central factorial numbers.
(Formerly M5255 N2287)
1
36, 820, 7645, 44473, 191620, 669188, 1999370, 5293970, 12728936, 28285400, 58856655, 115842675, 217378200, 391367064, 679524340, 1142659012 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=4..19.

Mircea Merca, A Special Case of the Generalized Girard-Waring Formula J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.

Index entries for sequences related to factorial numbers

FORMULA

a(n) = s(n,n-3)^2-2*s(n,n-4)*s(n,n-2)+2*s(n,n-5)*s(n,n-1)+2*s(n,n-6), where s(n,k) are Stirling numbers of the first kind, A048994. [From Mircea Merca, Apr 03 2012]

MAPLE

1/(-1+z)^10*(z^5+75*z^4+603*z^3+1065*z^2+460*z+36);

seq(stirling1(n, n-3)^2-2*stirling1(n, n-4)*stirling1(n, n-2)+2*stirling1(n, n-5)*stirling1(n, n-1)+2*stirling1(n, n-6), n=0..30) [From Mircea Merca, Apr 03 2012]

CROSSREFS

Column 3 of triangle A008955.

Sequence in context: A028222 A028216 A028221 * A028214 A028197 A028209

Adjacent sequences:  A000594 A000595 A000596 * A000598 A000599 A000600

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 21 12:05 EST 2014. Contains 249777 sequences.