login
A001265
Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), with repetition.
6
3, 7, 3, 5, 31, 3, 3, 7, 127, 3, 5, 17, 7, 73, 3, 11, 31, 23, 89, 3, 3, 5, 7, 13, 8191, 3, 43, 127, 7, 31, 151, 3, 5, 17, 257, 131071, 3, 3, 3, 7, 19, 73, 524287, 3, 5, 5, 11, 31, 41, 7, 7, 127, 337, 3, 23, 89, 683, 47, 178481, 3, 3, 5, 7, 13, 17, 241
OFFSET
2,1
COMMENTS
For n > 1, the length of row n is A046051(n). - T. D. Noe, Aug 06 2007
REFERENCES
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
LINKS
Max Alekseyev, Rows n = 2..1206, flattened (rows 2..500 from T. D. Noe)
Joerg Arndt, Rows n = 1..1200 of triangle (derived from Brillhart et al.; updated by Jon E. Schoenfield)
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
S. S. Wagstaff, Jr., The Cunningham Project
Eric Weisstein's World of Mathematics, Mersenne Number
EXAMPLE
Table begins:
n=2: 3;
n=3: 7;
n=4: 3, 5;
n=5: 31;
n=6: 3, 3, 7;
n=7: 127;
n=8: 3, 5, 17;
...
MATHEMATICA
Array[Flatten[ConstantArray[#1, #2] & @@ # & /@ FactorInteger[2^# - 1]] &, 24] // Flatten (* Michael De Vlieger, Dec 04 2017 *)
PROG
(PARI) row(n)= if (n==1, return ([0])); my(f = factor(2^n-1), v = []); for (i=1, #f~, for (j=1, f[i, 2], v = concat(v, f[i, j]))); v; \\ Michel Marcus, Dec 05 2017
CROSSREFS
Sequence in context: A337013 A362026 A122583 * A060443 A020810 A248895
KEYWORD
nonn,tabf
EXTENSIONS
Ambiguous rows 0 and 1 removed by Max Alekseyev, Jul 25 2023
STATUS
approved