login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity). 36
0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Length of row n of A001265.

LINKS

Sean A. Irvine, Table of n, a(n) for n = 1..1206 (terms 1..500 from T. D. Noe)

J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

Alex Kontorovich, Jeff Lagarias, On Toric Orbits in the Affine Sieve, arXiv:1808.03235 [math.NT], 2018.

R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018.

S. S. Wagstaff, Jr., The Cunningham Project

Eric Weisstein's World of Mathematics, Mersenne Number

FORMULA

Mobius transform of A085021. - T. D. Noe, Jun 19 2003

a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

EXAMPLE

a(4) = 2 because 2^4 - 1 = 15 = 3*5.

From Gus Wiseman, Jul 04 2019: (Start)

The sequence of Mersenne numbers together with their prime indices begins:

        1: {}

        3: {2}

        7: {4}

       15: {2,3}

       31: {11}

       63: {2,2,4}

      127: {31}

      255: {2,3,7}

      511: {4,21}

     1023: {2,5,11}

     2047: {9,24}

     4095: {2,2,3,4,6}

     8191: {1028}

    16383: {2,14,31}

    32767: {4,11,36}

    65535: {2,3,7,55}

   131071: {12251}

   262143: {2,2,2,4,8,21}

   524287: {43390}

  1048575: {2,3,3,5,11,13}

(End)

MAPLE

with(numtheory): P:=proc(n) local a, k; a:=ifactors(2^n-1)[2];

add(a[k][2], k=1..nops(a)); end: seq(P(i), i=1..99); # Paolo P. Lava, Jul 18 2018

MATHEMATICA

a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i]][2]], {i, n}][j]], {j, n}]]

a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n, 200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)

PROG

(PARI) a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

CROSSREFS

Cf. A000043, A000668, A001348, A054988, A054989, A054990, A054991, A054992, A057951-A057958, A085021.

Cf. A000225, A001221, A001222, A046800, A049093, A059305, A325610, A325611, A325612, A325625.

Sequence in context: A032741 A319149 A321887 * A025812 A263001 A109698

Adjacent sequences:  A046048 A046049 A046050 * A046052 A046053 A046054

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 14:39 EDT 2019. Contains 328114 sequences. (Running on oeis4.)