The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001262 Strong pseudoprimes to base 2. 71
 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The number 2^k-1 is in the sequence iff k is in A054723 or in A001567. - Thomas Ordowski, Sep 02 2016 The number (2^k+1)/3 is in the sequence iff k is in A127956. - Davide Rotondo, Aug 13 2021 REFERENCES R. K. Guy, Unsolved Problems Theory Numbers, A12. P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 (using data from A001567) Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp.786-792 Chris Caldwell, Strong probable prime Eric Weisstein's World of Mathematics, Pseudoprime Eric Weisstein's World of Mathematics, Strong Pseudoprime OEIS Wiki, Strong Pseudoprime Wikipedia, Strong pseudoprime EXAMPLE For k = 577, k-1 = 576 = 9*2^6. Since 2^(9*2^3) = 2^72 == -1 (mod 577), 577 passes the primality test, but since it is actually prime, it is not in the sequence. For k = 3277, k-1 = 3276 = 819*2^2, and 2^(819*2) == -1 (mod 3277), so k passes the primality test, and k = 3277 = 29*113 is composite, so 3277 is in the sequence. - Michael B. Porter, Sep 04 2016 MAPLE A007814 := proc(n) padic[ordp](n, 2) ; end proc: isStrongPsp := proc(n, b) local d, s, r; if type(n, 'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d, n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d, n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc: isA001262 := proc(n) isStrongPsp(n, 2) ; end proc: for n from 1 by 2 do if isA001262(n) then print(n); end if; end do: # R. J. Mathar, Apr 05 2011 MATHEMATICA sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *) PROG (PARI) isStrongPsp(n, b)={         my(s, d, r, bm) ;         if( (n% 2) ==0 || n <=1, return(0) ; ) ;         if(isprime(n), return(0) ; ) ;         s = valuation(n-1, 2) ;         d = (n-1)/2^s ;         bm = Mod(b, n)^d ;         if ( bm == Mod(1, n), return(1) ; ) ;         for(r=0, s-1,                 bm = Mod(b, n)^d ;                 if ( bm == Mod(-1, n),                         return(1) ;                 ) ;                 d *= 2;         ) ;         return(0); } isA001262(n)={         isStrongPsp(n, 2) } { for(n=1, 10000000000,     if(isA001262(n),         print(n)     ) ; ) ; } \\ R. J. Mathar, Mar 07 2012 (PARI) is_A001262(n, a=2)={ (bittest(n, 0) && !isprime(n) && n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012 CROSSREFS Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7). Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7). Sequence in context: A241039 A278353 A038462 * A141232 A062568 A180065 Adjacent sequences:  A001259 A001260 A001261 * A001263 A001264 A001265 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from David W. Wilson, Aug 15 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 04:50 EDT 2021. Contains 347700 sequences. (Running on oeis4.)