login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001262 Strong pseudoprimes to base 2. 48
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

R. K. Guy, Unsolved Problems Theory Numbers, A12.

P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000 (using data from A001567)

Joerg Arndt, Fxtbook, section 39.10, pp.786-792

Chris Caldwell, Strong probable prime

Eric Weisstein's World of Mathematics, Pseudoprime

Eric Weisstein's World of Mathematics, Strong Pseudoprime

OEIS Wiki, Strong Pseudoprime

Wikipedia, Strong pseudoprime

Index entries for sequences related to pseudoprimes

MAPLE

A007814 := proc(n) padic[ordp](n, 2) ; end proc:

isStrongPsp := proc(n, b) local d, s, r; if type(n, 'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d, n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d, n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:

isA001262 := proc(n) isStrongPsp(n, 2) ; end proc:

for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:

# R. J. Mathar, Apr 05 2011

MATHEMATICA

sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-Fran├žois Alcover, Oct 20 2011, after R. J. Mathar *)

PROG

(PARI)

isStrongPsp(n, b)={

        my(s, d, r, bm) ;

        if( (n% 2) ==0 || n <=1, return(0) ; ) ;

        if(isprime(n), return(0) ; ) ;

        s = valuation(n-1, 2) ;

        d = (n-1)/2^s ;

        bm = Mod(b, n)^d ;

        if ( bm == Mod(1, n), return(1) ; ) ;

        for(r=0, s-1,

                bm = Mod(b, n)^d ;

                if ( bm == Mod(-1, n),

                        return(1) ;

                ) ;

                d *= 2;

        ) ;

        return(0);

}

isA001262(n)={

        isStrongPsp(n, 2)

}

{

for(n=1, 10000000000,

    if(isA001262(n),

        print(n)

    ) ;

) ;

} /* R. J. Mathar, Mar 07 2012 */

is_A001262(n, a=2)={ (bittest(n, 0) & !isprime(n) & n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 & s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012

CROSSREFS

Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7).

Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7).

Sequence in context: A145590 A241039 A038462 * A141232 A062568 A180065

Adjacent sequences:  A001259 A001260 A001261 * A001263 A001264 A001265

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from David W. Wilson, Aug 15 1996.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 26 13:24 EDT 2014. Contains 244946 sequences.