login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001262 Strong pseudoprimes to base 2. 48
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

R. K. Guy, Unsolved Problems Theory Numbers, A12.

P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000 (using data from A001567)

Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp.786-792

Chris Caldwell, Strong probable prime

Eric Weisstein's World of Mathematics, Pseudoprime

Eric Weisstein's World of Mathematics, Strong Pseudoprime

OEIS Wiki, Strong Pseudoprime

Wikipedia, Strong pseudoprime

Index entries for sequences related to pseudoprimes

MAPLE

A007814 := proc(n) padic[ordp](n, 2) ; end proc:

isStrongPsp := proc(n, b) local d, s, r; if type(n, 'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d, n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d, n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:

isA001262 := proc(n) isStrongPsp(n, 2) ; end proc:

for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:

# R. J. Mathar, Apr 05 2011

MATHEMATICA

sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-Fran├žois Alcover, Oct 20 2011, after R. J. Mathar *)

PROG

(PARI)

isStrongPsp(n, b)={

        my(s, d, r, bm) ;

        if( (n% 2) ==0 || n <=1, return(0) ; ) ;

        if(isprime(n), return(0) ; ) ;

        s = valuation(n-1, 2) ;

        d = (n-1)/2^s ;

        bm = Mod(b, n)^d ;

        if ( bm == Mod(1, n), return(1) ; ) ;

        for(r=0, s-1,

                bm = Mod(b, n)^d ;

                if ( bm == Mod(-1, n),

                        return(1) ;

                ) ;

                d *= 2;

        ) ;

        return(0);

}

isA001262(n)={

        isStrongPsp(n, 2)

}

{

for(n=1, 10000000000,

    if(isA001262(n),

        print(n)

    ) ;

) ;

} /* R. J. Mathar, Mar 07 2012 */

is_A001262(n, a=2)={ (bittest(n, 0) & !isprime(n) & n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 & s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012

CROSSREFS

Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7).

Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7).

Sequence in context: A145590 A241039 A038462 * A141232 A062568 A180065

Adjacent sequences:  A001259 A001260 A001261 * A001263 A001264 A001265

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from David W. Wilson, Aug 15 1996.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 07:56 EST 2014. Contains 249839 sequences.