login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060130 Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118. 46
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..40320

Index entries for sequences related to factorial base representation

FORMULA

a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).

a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).

a(n) = A060129(n) - A060128(n).

a(n) = A084558(n) - A257510(n).

a(n) = A275946(n) + A275962(n).

a(n) = A275948(n) + A275964(n).

a(n) = A055091(A060119(n)).

a(n) = A069010(A277012(n)) = A000120(A275727(n)).

a(n) = A001221(A275733(n)) = A001222(A275733(n)).

a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).

a(n) = A046660(A275725(n)).

a(A225901(n)) = a(n).

A257511(n) <= a(n) <= A034968(n).

A275806(n) <= a(n).

a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]

a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

EXAMPLE

19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.

MAPLE

A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))

fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;

count_nonfixed := l -> convert(map(nops, l), `+`);

positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;

# For procedure PermUnrank3R see A060117

MATHEMATICA

Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* Michael De Vlieger, Dec 30 2017 *)

PROG

(Scheme)

(define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))

;; Two other implementations, that use memoization-macro definec:

(definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))

(definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))

;; Antti Karttunen, Dec 30 2017

CROSSREFS

Cf. A007623, A034968, A055091, A060117, A060118, A060128, A060129, A060131, A060502, A257687, A275734, A275735, A276076.

Cf. A227130 (positions of even terms), A227132 (of odd terms).

Cf. also A225901, A232094, A257694, A257695.

The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.

Differs from similar A267263 for the first time at n=30.

Sequence in context: A132881 A224702 A267263 * A257695 A257694 A281543

Adjacent sequences:  A060127 A060128 A060129 * A060131 A060132 A060133

KEYWORD

nonn

AUTHOR

Antti Karttunen, Mar 02 2001

EXTENSIONS

Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by Antti Karttunen, Dec 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 13:48 EDT 2019. Contains 326279 sequences. (Running on oeis4.)